[go: up one dir, main page]

login
A091809
Given the infinite continued fraction i+(i/(i+(i/(i+...)))), where i is the square root of (-1), this is the denominator of the imaginary part of the convergents.
7
1, 1, 2, 5, 3, 10, 41, 85, 178, 123, 769, 10, 3329, 533, 1602, 30005, 62441, 64970, 270409, 187575, 1171042, 2436961, 5071361, 16490, 1045821, 45703841, 95110562, 15225145, 411889609, 47619450, 1783745641, 3712008565, 7724760338
OFFSET
1,3
COMMENTS
The sequence of complex numbers (which this sequence is part of) converges to (i+sqrt(-1+4i))/2, found by simply solving the equation A=i+(i/A) for A using the quadratic formula. When plotted in the complex plane, these numbers form a counterclockwise spiral that quickly converges to a point.
EXAMPLE
a(6) = 10 since the sixth convergent is (3/5) + (13/10)i and hence the denominator of the imaginary part is 10.
MATHEMATICA
GenerateA091809[1] := I; GenerateA091809[n_] := I + I/(GenerateA091809[n-1]); GenerateDenominatorsA091809[n_] := Table[Denominator[Im[GenerateA091809[x]]], {x, 1, n}]; GenerateDenominatorsA091809[20] gives the first 20 terms.
A091809[n_] := Denominator[ IM[ Fold[ I/(I + #) &, 1, Range[n]]]]; Table[ A091809[n], {n, 0, 32}] (* Robert G. Wilson v, Mar 13 2004 *)
CROSSREFS
KEYWORD
cofr,frac,nonn
AUTHOR
Ryan Witko (witko(AT)nyu.edu), Mar 06 2004
STATUS
approved