[go: up one dir, main page]

login
A089800
Expansion of Jacobi theta function theta_2(q)/q^(1/4).
2
2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
For n > 0, a(n) = 2*(floor(sqrt(n+1/4)-1/2) - floor(sqrt(n-1+1/4)-1/2)). - Mikael Aaltonen, Jan 18 2015
a(n) = 2*(floor(sqrt(n+1)+1/2)-floor(sqrt(n)+1/2)). - Mikael Aaltonen, Jan 20 2015
a(n) = 2*A005369(n). - Michel Marcus, Jan 20 2015
MAPLE
A089800 := proc(n)
if issqr(1+4*n) then
if type( sqrt(1+4*n)-1, 'even') then
2;
else
0;
end if;
else
0;
end if;
end proc:
seq( A089800(n), n=0..40) ; # R. J. Mathar, Feb 22 2021
MATHEMATICA
a[n_] := SeriesCoefficient[ EllipticTheta[2, 0, q]/q^(1/4), {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *)
Table[2*(Floor[Sqrt[n+1]+1/2] - Floor[Sqrt[n]+1/2]), {n, 0, 50}] (* G. C. Greubel, Nov 20 2017 *)
PROG
(PARI) for(n=0, 50, print1(2*(floor(sqrt(n+1)+1/2) - floor(sqrt(n)+1/2)), ", ")) \\ G. C. Greubel, Nov 20 2017
(Magma) [2*(Floor(Sqrt(n+1)+1/2) - Floor(Sqrt(n)+1/2)): n in [0..50]]; // G. C. Greubel, Nov 20 2017
CROSSREFS
Sequence in context: A069517 A193526 A160498 * A079208 A262682 A318983
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Nov 12 2003
STATUS
approved