[go: up one dir, main page]

login
A087707
Number of steps for iteration of map x -> (5/3)*ceiling(x) to reach an integer > n when started at n, or -1 if no such integer is ever reached.
8
5, 4, 1, 3, 2, 1, 2, 3, 1, 10, 4, 1, 6, 2, 1, 2, 9, 1, 3, 3, 1, 5, 2, 1, 2, 5, 1, 4, 8, 1, 3, 2, 1, 2, 3, 1, 4, 12, 1, 5, 2, 1, 2, 4, 1, 3, 3, 1, 7, 2, 1, 2, 4, 1, 5, 6, 1, 3, 2, 1, 2, 3, 1, 11, 5, 1, 4, 2, 1, 2, 6, 1, 3, 3, 1, 4, 2, 1, 2, 5, 1, 6, 4, 1, 3, 2, 1, 2, 3, 1, 6, 4, 1, 5, 2, 1, 2, 5, 1, 3
OFFSET
1,1
COMMENTS
It is conjectured that an integer is always reached.
LINKS
J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
MAPLE
c2 := proc(x, y) x*ceil(y); end; r := 5/3; ch := proc(x) local n, y; global r; y := c2(r, x); for n from 1 to 20 do if whattype(y) = 'integer' then RETURN([x, n, y]); else y := c2(r, y); fi; od: RETURN(['NULL', 'NULL', 'NULL']); end; [seq(ch(n)[2], n=1..100)];
PROG
(Python)
from fractions import Fraction
def A087707(n):
x, c = Fraction(n), 0
while x.denominator > 1 or x<=n:
x = Fraction(5*x.__ceil__(), 3)
c += 1
return c # Chai Wah Wu, Sep 02 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 29 2003
STATUS
approved