[go: up one dir, main page]

login
A086032
Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+1.
14
0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8
OFFSET
0,2
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..1004
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, section 3.2, constant P(m=4,n=1,s=2).
X. Gourdon and P. Sebah, Some Constants from Number theory.
FORMULA
Zeta_Q(2) = Sum_{p in A002144} 1/p^2, where A002144 = {primes p == 1 (mod 4)}.
Equals A085548 - 1/4 - A085991. - R. J. Mathar, Apr 03 2011
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021
EXAMPLE
0.053813763574057670280678287341536562285675501495085532293911422295866827...
MATHEMATICA
digits = 1004; nmax0 = 100; dnmax = 10;
Clear[PrimeZeta41];
f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
PrimeZeta41[2, nmax = nmax0];
PrimeZeta41[2, nmax += dnmax];
While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta41[2] = PrimeZeta41[2, nmax];
Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
PROG
(PARI) From M. F. Hasler, Apr 24 2021: (Start)
PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t, 1/4)-zetahurwitz(t, 3/4))/(4^t+2^t))/(4*n+2))}
A086032_upto(N=100)={localprec(N+3); digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\ (End)
CROSSREFS
Cf. A085991 (same for primes 4k+3), A175644 (for primes 3k+1), A343612 (for primes 3k+2), A086033 - A086039 (for 1/p^3, ..., 1/p^9), A085548 (PrimeZeta(2)), A002144 (primes 4k+1).
Sequence in context: A187488 A372831 A087654 * A018222 A349578 A374260
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003
STATUS
approved