OFFSET
0,2
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..1004
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, section 3.2, constant P(m=4,n=1,s=2).
X. Gourdon and P. Sebah, Some Constants from Number theory.
FORMULA
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021
EXAMPLE
0.053813763574057670280678287341536562285675501495085532293911422295866827...
MATHEMATICA
digits = 1004; nmax0 = 100; dnmax = 10;
Clear[PrimeZeta41];
f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
PrimeZeta41[2, nmax = nmax0];
PrimeZeta41[2, nmax += dnmax];
While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta41[2] = PrimeZeta41[2, nmax];
Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
PROG
(PARI) From M. F. Hasler, Apr 24 2021: (Start)
PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t, 1/4)-zetahurwitz(t, 3/4))/(4^t+2^t))/(4*n+2))}
A086032_upto(N=100)={localprec(N+3); digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\ (End)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003
STATUS
approved