[go: up one dir, main page]

login
A085971
Union of primes and numbers that are not prime powers (A000040, A024619).
7
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
OFFSET
1,1
COMMENTS
Complement of A025475;
A085972(n) = Max{k: a(k)<=n};
different from A007916 and A052485, as a(28)=36;
A085818(a(n)) = A000040(n).
FORMULA
a(n) = n + o(sqrt n). - Charles R Greathouse IV, Oct 19 2015
MATHEMATICA
With[{nn=100}, Union[Join[Prime[Range[PrimePi[nn]]], DeleteCases[Range[2, 80], _?(PrimePowerQ[#]&)]]]] (* Harvey P. Dale, May 15 2019 *)
PROG
(PARI) is(n)=isprimepower(n)<2 && n>1 \\ Charles R Greathouse IV, Oct 19 2015
(Python)
from sympy import primepi, integer_nthroot
def A085971(n):
def f(x): return int(n+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 20 2024
CROSSREFS
Sequence in context: A089105 A028769 A094784 * A175082 A007916 A052485
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 06 2003
STATUS
approved