OFFSET
1,2
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 1..10000
R. R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1 1995 pp. 27-29.
R. R. Forslund, Positive Integer Pages [Broken link]
James E. Foster, A Number System without a Zero-Symbol, Mathematics Magazine, Vol. 21, No. 1. (1947), pp. 39-41.
FORMULA
From Hieronymus Fischer, Jun 06 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1..4.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 4)*10^j,
where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Special values:
a(k*(4^n-1)/3) = k*(10^n-1)/9, k = 1,2,3,4.
a((7*4^n-4)/3) = (13*10^n-4)/9 = 10^n + 4*(10^n-1)/9.
a((4^n-1)/3 - 1) = 4*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k>0.
a(n) > (4/10)*(10^log_4(3*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_4(3*n) = 2/45, for n --> infinity.
lim sup a(n)/10^log_4(3*n) = 1/9, for n --> infinity.
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1 - 5z(j)^4 + 4z(j)^5)/((1-z(j))(1-z(j)^4)), where z(j) = x^4^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1-5(x^4^j)^4 + 4(x^4^j)^5)*x^4^j*f_j(x)/(1-x^4^j), where f_j(x) = 10^j*x^((4^j-1)/3)/(1-(x^4^j)^4). The f_j obey the recurrence f_0(x) = 1/(1-x^4), f_(j+1)(x) = 10x*f_j(x^4).
Also: g(x) = (1/(1-x))* (h_(4,0)(x) + h_(4,1)(x) + h_(4,2)(x) + h_(4,3)(x) - 4*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3) * (x^4^j)^k/(1-(x^4^j)^4).
(End)
a(n) = A045926(n) / 2. - Reinhard Zumkeller, Jan 01 2013
EXAMPLE
From Hieronymus Fischer, Jun 06 2012: (Start)
a(100) = 1144.
a(10^3) = 33214.
a(10^4) = 2123434.
a(10^5) = 114122134.
a(10^6) = 3243414334.
a(10^7) = 211421121334.
a(10^8) = 11331131343334.
a(10^9) = 323212224213334. (End)
PROG
(Python)
def A084544(n):
m = (3*n+1).bit_length()-1>>1
return int(''.join((str(((3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3)+1) for j in range(m)))) # Chai Wah Wu, Feb 08 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003
EXTENSIONS
STATUS
approved