[go: up one dir, main page]

login
A084371
Squarefree kernels of powerful numbers (A001694).
3
1, 2, 2, 3, 2, 5, 3, 2, 6, 7, 2, 6, 3, 10, 6, 11, 5, 2, 6, 13, 14, 10, 6, 15, 3, 2, 6, 17, 6, 7, 19, 14, 10, 6, 21, 22, 10, 2, 23, 6, 5, 6, 15, 26, 3, 14, 10, 29, 6, 30, 31, 22, 6, 10, 2, 33, 15, 6, 34, 35, 6, 21, 11, 26, 37, 14, 38, 39, 14, 10, 41, 6, 42, 30, 43, 22, 6, 10
OFFSET
1,2
LINKS
Rafael Jakimczuk, The kernel of powerful numbers, International Mathematical Forum, Vol. 12, No. 15 (2017), pp. 721-730, Remark 2.5, p. 729.
FORMULA
a(n) = A007947(A001694(n)).
From Amiram Eldar, May 13 2023: (Start)
Sum_{A001694(k) < x} a(k) = (1/2) * x + o(x) (Jakimczuk, 2017). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/zeta(3/2))^2/2 = 0.1058641473... . (End)
EXAMPLE
A001694(11) = 64 = 2^6 -> a(11) = 2,
A001694(12) = 72 = 2^3 * 3^2 -> a(12) = 2*3 = 6,
A001694(13) = 81 = 3^4 -> a(13) = 3.
MATHEMATICA
s = {1}; Do[f = FactorInteger[n]; If[Min @ f[[;; , 2]] > 1, AppendTo[s, Times @@ f[[;; , 1]]]], {n, 2, 10^4}]; s (* Amiram Eldar, Aug 22 2019 *)
PROG
(PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947
lista(nn) = apply(x->rad(x), select(x->ispowerful(x), [1..nn])); \\ Michel Marcus, Aug 22 2019
(Python)
from math import prod, isqrt
from sympy import mobius, integer_nthroot, primefactors
def A084371(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l, j = n+x-squarefreepi(integer_nthroot(x, 3)[0]), 0, isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
return prod(primefactors(bisection(f, n, n))) # Chai Wah Wu, Sep 13 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Reinhard Zumkeller, Jun 23 2003
STATUS
approved