OFFSET
1,2
COMMENTS
The upper principal and intermediate convergents to 2^(1/2), beginning with 2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence; essentially, numerators=A143609 and denominators=A084068. - Clark Kimberling, Aug 27 2008
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. We have
a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and
This is a fourth-order divisibility sequence. Indeed, a(2*n) = U(2*n)/sqrt(2) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ).
It appears that this sequence consists of those numbers m such that 2*m^2 = floor( m*sqrt(2) * ceiling(m*sqrt(2)) ). Cf. A084069. (End)
Conjecture: a(n) is the earliest occurrence of n in A348295, which is to say, a(n) is the least m such that Sum_{k=1..m} (-1)^(floor(k*(sqrt(2)-1))) = Sum_{k=1..m} (-1)^A097508(k) = n. This has been confirmed for the first 32 terms by Chai Wah Wu, Oct 21 2021. - Jianing Song, Jul 16 2022
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..2608
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
E. W. Weisstein, MathWorld: Lehmer Number
Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
FORMULA
"A Diofloortin equation": n such that 2*n^2=floor(n*sqrt(2)*ceiling(n*sqrt(2))).
a(n)*a(n+3) = -2 + a(n+1)*a(n+2).
From Paul Barry, Jun 06 2006: (Start)
G.f.: x(1+x)^2/(1-6x^2+x^4);
a(n) = ((sqrt(2)+1)^n-(sqrt(2)-1)^n)((sqrt(2)/8-1/4)*(-1)^n+sqrt(2)/8+1/4);
a(n+1) = Sum_{k=0..floor((n+1)/2)} 2^k*(C(n+1,2k)-C(n,2k+1)*(1-(-1)^n)/2. (End)
From Peter Bala, Mar 23 2018: (Start)
a(2*n + 2) = a(2*n + 1) + sqrt( (1 + a(2*n + 1)^2)/2 ).
a(2*n + 1) = 2*a(2*n) + sqrt( (1 + 2*a(2*n)^2) ).
More generally,
a(2*n+2*m+1) = sqrt(2)*a(2*n) o a(2*m+1), where o is the binary operation defined above, that is,
a(2*n+2*m+1) = sqrt(2)*a(2*n)*sqrt(1 + a(2*m+1)^2) + a(2*m+1)*sqrt(1 + 2*a(2*n)^2).
sqrt(2)*a(2*(n + m)) = (sqrt(2)*a(2*n)) o (sqrt(2)*a(2*m)), that is,
a(2*n+2*m) = a(2*n)*sqrt(1 + 2*a(2*m)^2) + a(2*m)*sqrt(1 + 2*a(2*n)^2).
sqrt(1 + 2*a(2*n)^2) = A001541(n).
1 + 2*a(2*n)^2 = A055792(n+1).
a(2*n) - a(2*n-1) = A001653(n).
(1 + a(2*n+1)^2)/2 = A008844(n).
(End)
MAPLE
a := proc (n) if `mod`(n, 2) = 1 then (1/2)*(sqrt(2) + 1)^n - (1/2)*(sqrt(2) - 1)^n else (1/2)*((sqrt(2) + 1)^n - (sqrt(2) - 1)^n)/sqrt(2) end if;
end proc:
seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018
MATHEMATICA
a[n_] := ((Sqrt[2]+1)^n - (Sqrt[2]-1)^n) ((-1)^n(Sqrt[2]-2) + (Sqrt[2]+2))/8;
Table[Simplify[a[n]], {n, 30}] (* after Paul Barry, Peter Luschny, Mar 29 2018 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 6, 0]^(n-1)*[1; 2; 7; 12])[1, 1] \\ Charles R Greathouse IV, Jun 20 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, May 10 2003
STATUS
approved