[go: up one dir, main page]

login
A082850
Let S(0) = {}, S(n) = {S(n-1), S(n-1), n}; sequence gives S(infinity).
11
1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1
OFFSET
1,3
COMMENTS
Sequence counts up to successive values of A001511; i.e., apply the morphism k -> 1,2,...,k to A001511. If all 1's are removed from the sequence, the resulting sequence b has b(n) = a(n)+1. A101925 lists the positions of 1's in this sequence.
The geometric mean of this sequence approaches the Somos constant (A112302). - Jwalin Bhatt, Jan 30 2025
LINKS
FORMULA
a(2^m - 1) = m.
If n = 2^m - 1 + k with 0 < k < 2^m, then a(n) = a(k). - Franklin T. Adams-Watters, Aug 16 2006
a(n) = log_2(A182105(n)) + 1. - Laurent Orseau, Jun 18 2019
EXAMPLE
S(1) = {1}, S(2) = {1,1,2}, S(3) = {1,1,2,1,1,2,3}, etc.
MATHEMATICA
Fold[Flatten[{#1, #1, #2}] &, {}, Range[5]] (* Birkas Gyorgy, Apr 13 2011 *)
Flatten[Table[Length@Last@Split@IntegerDigits[2 n, 2], {n, 20}] /. {n_ ->Range[n]}] (* Birkas Gyorgy, Apr 13 2011 *)
PROG
(Python)
S = []; [S.extend(S + [n]) for n in range(1, 8)]
print(S) # Michael S. Branicky, Jul 02 2022
(Python)
from itertools import count, islice
def A082850_gen(): # generator of terms
S = []
for n in count(1):
yield from (m:=S+[n])
S += m #
A082850_list = list(islice(A082850_gen(), 20)) # Chai Wah Wu, Mar 06 2023
CROSSREFS
Cf. A082851 (partial sums).
Sequence in context: A375571 A106796 A265743 * A290695 A277446 A334029
KEYWORD
nonn,hear
AUTHOR
Benoit Cloitre, Apr 14 2003
STATUS
approved