[go: up one dir, main page]

login
A080763
Exchange 1's and 2's in the eta-sequence A006337.
13
2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2
OFFSET
1,1
LINKS
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
Digits := 100: c2 := sqrt(2.): A080763 := n->3-floor((n+1)*c2)+floor(n*c2);
MATHEMATICA
Flatten[ Table[ Nest[ Flatten[ # /. {1 -> {2, 2, 1}, 2 -> {2, 1}}] &, {2}, n], {n, 5}]] (* Robert G. Wilson v, May 06 2005 *)
PROG
(Python)
from math import isqrt
def A080763(n): return 3+isqrt(m:=n*n<<1)-isqrt(m+(n<<2)+2) # Chai Wah Wu, Aug 03 2022
CROSSREFS
Different from A022921.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Sequence in context: A309858 A375508 A022921 * A245920 A165413 A172155
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 25 2003
STATUS
approved