[go: up one dir, main page]

login
A079458
Number of Gaussian integers in a reduced system modulo n.
23
1, 2, 8, 8, 16, 16, 48, 32, 72, 32, 120, 64, 144, 96, 128, 128, 256, 144, 360, 128, 384, 240, 528, 256, 400, 288, 648, 384, 784, 256, 960, 512, 960, 512, 768, 576, 1296, 720, 1152, 512, 1600, 768, 1848, 960, 1152, 1056, 2208, 1024, 2352, 800, 2048, 1152, 2704
OFFSET
1,2
COMMENTS
Number of units in the ring consisting of the Gaussian integers modulo n. - Jason Kimberley, Dec 07 2015
LINKS
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Wayback Machine link]
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
Catalina Calderón, Jose Maria Grau, A. Oller-Marcén, and László Tóth, Counting invertible sums of squares modulo n and a new generalization of Euler's totient function, Publicationes Mathematicae-Debrecen, Vol. 87 (1-2) (2015), pp. 133-145; arXiv preprint, arXiv:1403.7878 [math.NT], 2014.
FORMULA
Multiplicative with a(2^e) = 2^(2*e-1), a(p^e) = (p^2-1)*p^(2*e-2) if p mod 4=3 and a(p^e) = (p-1)^2*p^(2*e-2) if p mod 4=1.
a(n) = A003557(n)^2 * a(A007947(n)), where a(2)=2, a(p)=(p-1)^2 for prime p=1(mod 4), a(p)=p^2-1 for prime p=3(mod 4), and a(n*m)=a(n)*a(m) for n coprime to m. - Jason Kimberley, Nov 16 2015
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-2) * (1 - 1/2^(s-1)) * Product_{p prime > 2} (1 - 1/p^(s-1) - (-1)^((p-1)/2)*(p-1)/p^s).
Sum_{k=1..n} a(k) = c * n^3 / 3 + O(n^2 * log(n)), where c = (3/4) * Product_{p prime > 2} (1 - 1/p^2 - (-1)^((p-1)/2)*(p-1)/p^3) = (3/4) * A334427 * Product_{p prime == 1 (mod 4)} (1 - 2/p^2 + 1/p^3) = 0.6498027559... (Calderón et al., 2015). (End)
a(n) = A204617(n)*A062570(n). - Ridouane Oudra, Jun 05 2024
EXAMPLE
{1, i, 1+2i, 2+i, 3, 3i, 3+2i, 2+3i} is the set of eight units in the Gaussian integers modulo 4. - Jason Kimberley, Dec 07 2015
MAPLE
with(GaussInt): seq(GIphi(n), n=1..100);
MATHEMATICA
phi[1]=1; phi[p_, s_] := Which[Mod[p, 4] == 3, p^(2 s - 2) (p^2 - 1), Mod[p, 4] == 1, p^(2 s - 2) ((p - 1))^2, True, 2^(2 s - 1)]; phi[n_] := Product[phi[FactorInteger[n][[i, 1]], FactorInteger[n][[i, 2]]], {i, Length[FactorInteger[n]]}]; Table[phi[n], {n, 1, 33}] (* José María Grau Ribas, Mar 16 2014 *)
f[p_, e_] := (p - 1)*p^(2*e - 1) * If[p == 2, 1, 1 - (-1)^((p-1)/2)/p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
PROG
(Magma) A079458 := func<n|#UnitGroup(quo<IntegerRing(QuadraticField(-1))|n>)>; // Jason Kimberley, Nov 14 2015
(PARI)
a(n)=
{
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2, r*=2^(2*e-1));
if(p%4==1, r*=(p-1)^2*p^(2*e-2));
if(p%4==3, r*=(p^2-1)*p^(2*e-2));
);
return(r);
} \\ Jianing Song, Sep 16 2018
CROSSREFS
Equals four times A218147. - Jason Kimberley, Nov 14 2015
Sequences giving the number of solutions to the equation GCD(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).
Sequence in context: A092280 A070987 A168286 * A281914 A290378 A104537
KEYWORD
mult,easy,nonn
AUTHOR
Vladeta Jovovic, Jan 14 2003
STATUS
approved