OFFSET
0,2
COMMENTS
Conjecture: a(n) = sum of the n-th row of lower triangular matrix A078536.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..60
FORMULA
a(n) = coefficient of x^(4^n) in power series expansion of 1/[(1-x)(1-x^4)(1-x^16)...(1-x^(4^k))...].
EXAMPLE
a(2) = 6 since partitions of 4^2 into powers of 4 are: [16], [4,4,4,4], [4,4,4,1,1,1,1], [4,4,1,1,1,1,1,1,1,1], [4,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/4]]; b = Table[ a[n], {n, 0, 4^9}]; Table[ b[[4^n + 1]], {n, 0, 9}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 29 2002
EXTENSIONS
Extended by Robert G. Wilson v, Dec 01 2002
More terms from Alois P. Heinz, Oct 11 2008
STATUS
approved