[go: up one dir, main page]

login
A078144
Starts for strings of at least five consecutive nonsquarefree numbers.
11
844, 1680, 2888, 3624, 5046, 10924, 14748, 15848, 17404, 19940, 22020, 22021, 22624, 23272, 24647, 24648, 25772, 29348, 30248, 30923, 30924, 33172, 36700, 37248, 38724, 39444, 40472, 45372, 47672, 47673, 47724, 47824, 48372, 49488
OFFSET
1,1
LINKS
FORMULA
A078144 = { A070284[k] | A070284[k+1] = A070284[k]+1 }. - M. F. Hasler, Feb 01 2016
a(n) = A188296(n) - 2. - Amiram Eldar, Feb 09 2021
EXAMPLE
Squares dividing 5-string=844+j, j=0,..,4 are as follows:4,169,9,121,16 resp. Each term initiates an arithmetic progression with suitable large difference. Such progressions are constructible by solving suitable linear Diophantine equations. E.g., quintet = {mk+3689649, mk+3689650, mk+3689651, mk+3689652, mk+3689653} = {9(592900k+409961, 25(213444k+147586, 49(108900k+75299, 4(1334025k+922413), 121(44100k+30493)}; m=2310*2310=A002110(5)^2=A061742(5)=5336100.
MATHEMATICA
s5[x_] := Total[Table[Abs[MoebiusMu[x + j]], {j, 0, 4}]] == 0; Select[Range[50000], s5]
Flatten[Position[Partition[SquareFreeQ/@Range[60000], 5, 1], _?(Union[#] == {False}&), {1}, Heads->False]] (* Harvey P. Dale, May 24 2014 *)
SequencePosition[Table[If[SquareFreeQ[n], 0, 1], {n, 50000}], {1, 1, 1, 1, 1}][[All, 1]] (* Harvey P. Dale, Oct 16 2022 *)
CROSSREFS
Cf. A045882 (min terms), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077647 (8-chains), A078143 (9-chains), A188296.
Sequence in context: A114359 A038013 A334183 * A071320 A338628 A323253
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 25 2002
STATUS
approved