%I #21 Dec 13 2018 02:46:40
%S 14467,14476,14647,14674,14746,14764,16447,16474,16744,17446,17464,
%T 17644,41467,41476,41647,41674,41746,41764,44167,44176,44617,44671,
%U 44716,44761,46147,46174,46417,46471,46714,46741,47146,47164,47416
%N Numbers n such that sum of cubes of even digits of n equals sum of cubes of odd digits of n.
%C Minimal number of digits in n is 5.
%C n such that sum of even digits equals sum of odd digits in A036301.
%H Marius A. Burtea, <a href="/A076165/b076165.txt">Table of n, a(n) for n = 1..5880</a>
%e 14467 is OK because 1^3+7^3=4^3+4^3+6^3.
%t oeQ[n_]:=Module[{idn = IntegerDigits[n]},Total[Select[idn, OddQ]^3] == Total[Select[idn, EvenQ]^3]]; Select[Range[100000],oeQ] (* _Harvey P. Dale_, Sep 23 2011 *)
%o (PARI) ok(n)={my(v=digits(n)); sum(i=1, #v, v[i]^3*if(v[i]%2, 1, -1))==0} \\ _Andrew Howroyd_, Dec 10 2018
%Y Cf. A036301, A076166.
%K nonn,base
%O 1,1
%A _Zak Seidov_, Nov 01 2002