[go: up one dir, main page]

login
A076165
Numbers n such that sum of cubes of even digits of n equals sum of cubes of odd digits of n.
3
14467, 14476, 14647, 14674, 14746, 14764, 16447, 16474, 16744, 17446, 17464, 17644, 41467, 41476, 41647, 41674, 41746, 41764, 44167, 44176, 44617, 44671, 44716, 44761, 46147, 46174, 46417, 46471, 46714, 46741, 47146, 47164, 47416
OFFSET
1,1
COMMENTS
Minimal number of digits in n is 5.
n such that sum of even digits equals sum of odd digits in A036301.
LINKS
EXAMPLE
14467 is OK because 1^3+7^3=4^3+4^3+6^3.
MATHEMATICA
oeQ[n_]:=Module[{idn = IntegerDigits[n]}, Total[Select[idn, OddQ]^3] == Total[Select[idn, EvenQ]^3]]; Select[Range[100000], oeQ] (* Harvey P. Dale, Sep 23 2011 *)
PROG
(PARI) ok(n)={my(v=digits(n)); sum(i=1, #v, v[i]^3*if(v[i]%2, 1, -1))==0} \\ Andrew Howroyd, Dec 10 2018
CROSSREFS
Sequence in context: A238060 A210050 A203815 * A376415 A234119 A253116
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Nov 01 2002
STATUS
approved