OFFSET
0,4
COMMENTS
The sum of the terms pertaining to the above product is the (n+1)-th Fibonacci number: 1 + 5 + 6 + 1 = 13.
n divides A073617(n+1) for n>=1; see the Mathematica section. [Clark Kimberling, Feb 29 2012]
FORMULA
a(n) = Product_{k=0..floor(n/2)} binomial(n-k,k).
a(2n+1)/a(2n-1) = binomial(2n,n); a(2n)/a(2n-2) = (1/2)*binomial(2n,n); (a(2n+1)*a(2n-2))/(a(2n)*a(2n-1)) = 2. - John Molokach, Sep 09 2013
EXAMPLE
For n=6 the diagonal is 1,5,6,1 and product of the terms = 30 hence a(6) = 30.
MAPLE
a:= n-> mul(binomial(n-i, i), i=0..floor(n/2)):
seq(a(n), n=0..21); # Alois P. Heinz, Nov 27 2023
MATHEMATICA
p[n_] := Product[Binomial[n + 1 - k, k], {k, 1, Floor[(n + 1)/2]}]
Table[p[n], {n, 1, 20}] (* A073617(n+1) *)
Table[p[n]/n, {n, 1, 20}] (* A208649 *)
( * Clark Kimberling, Feb 29 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 07 2002
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003
STATUS
approved