[go: up one dir, main page]

login
A073355
Sum of squarefree kernels of numbers <= n.
8
1, 3, 6, 8, 13, 19, 26, 28, 31, 41, 52, 58, 71, 85, 100, 102, 119, 125, 144, 154, 175, 197, 220, 226, 231, 257, 260, 274, 303, 333, 364, 366, 399, 433, 468, 474, 511, 549, 588, 598, 639, 681, 724, 746, 761, 807, 854, 860, 867, 877, 928, 954, 1007, 1013, 1068
OFFSET
1,2
REFERENCES
G. Tenenbaum, "Introduction à la théorie analytique et probabiliste des nombres", Cours spécialisé, collection SMF, p. 55, 1995.
LINKS
E. Cohen, Some asymptotic formulas in the theory of numbers, Trans. Amer. Math. Soc. 112 (1964) 214-227.
FORMULA
a(n) = (1/2)*C*n^2 + O(n^(3/2)) where C=prod(1-1/p/(p+1))=0.7044... (see A065463). - Benoit Cloitre, Jan 31 2003
G.f.: (1/(1 - x))*Sum_{k>=1} phi(k)*mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 15 2017
a(n) = Sum_{i=1..n} phi(i)*mu(i)^2*floor(n/i). - Ridouane Oudra, Oct 17 2019
a(n) = Sum_{k=1..n} rad(k). - Wesley Ivan Hurt, Jun 12 2021
MAPLE
with(numtheory): A073355 := n -> add(ilcm(op(factorset(k))), k = 1 .. n): seq(A073355(i), i = 1 .. 52); # Peter Luschny, Jun 23 2011
MATHEMATICA
Accumulate[Table[Last[Select[Divisors[n], SquareFreeQ]], {n, 100}]] (* Vaclav Kotesovec, Oct 06 2016 *)
Drop[CoefficientList[Series[(1/(1 - x))*Sum[EulerPhi[k] MoebiusMu[k]^2*x^k/(1 - x^k), {k, 100}], {x, 0, 100}], x], 1] (* Indranil Ghosh, Apr 16 2017 *)
PROG
(PARI) print1(s=1); for(n=2, 99, t=factor(n)[, 1]; print1(", ", s+=prod(i=1, #t, t[i]))) \\ Charles R Greathouse IV, Jun 24 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 29 2002
STATUS
approved