[go: up one dir, main page]

login
A068377
Engel expansion of sinh(1).
6
1, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190
OFFSET
1,2
COMMENTS
This sequence is also the Pierce expansion of sin(1). - G. C. Greubel, Nov 14 2016
LINKS
Eric Weisstein's World of Mathematics, Engel Expansion
Eric Weisstein's World of Mathematics, Hyperbolic Sine
Eric Weisstein's World of Mathematics, Pierce Expansion
Wikipedia, Engel Expansion
FORMULA
a(n) = (2*n-2)*(2*n-1) = A002943(n-1) = 2*A000217(2n-2) for n>1. [Corrected and extended by M. F. Hasler, Jul 19 2015]
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
G.f.: x*(1 + 3*x + 5*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: -2 + x + 2*(1 - x + 2*x^2)*exp(x). - G. C. Greubel, Oct 27 2016
MATHEMATICA
Join[{1}, Table[(2 n - 2) (2 n - 1), {n, 2, 50}]] (* Bruno Berselli, Aug 04 2015 *)
LinearRecurrence[{3, -3, 1}, {1, 6, 20, 42}, 25] (* G. C. Greubel, Oct 27 2016; a(1)=1 by Georg Fischer, Apr 02 2019*)
Rest@ CoefficientList[Series[x (1 + 3 x + 5 x^2 - x^3)/(1 - x)^3, {x, 0, 46}], x] (* Michael De Vlieger, Oct 28 2016 *)
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Sin[1] , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
PROG
(PARI) A068377(n)=(n+n--)*n*2+!n \\ M. F. Hasler, Jul 19 2015
(Sage)
A068377 = lambda n: rising_factorial(n*2, 2) if n>0 else 1
print([A068377(n) for n in (0..45)]) # Peter Luschny, Aug 04 2015
CROSSREFS
Cf. A006784, A073742 (sinh(1)).
Sequence in context: A143711 A338120 A077539 * A002943 A009946 A290154
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Mar 03 2002
STATUS
approved