[go: up one dir, main page]

login
A067541
phi(n*(n+1)/2)/phi(n) where phi is the Euler totient function A000010(n).
1
1, 2, 1, 2, 2, 6, 2, 3, 4, 10, 2, 6, 6, 8, 4, 8, 6, 18, 4, 6, 10, 22, 4, 10, 12, 18, 6, 14, 8, 30, 8, 10, 16, 24, 6, 18, 18, 24, 8, 20, 12, 42, 10, 12, 22, 46, 8, 21, 20, 32, 12, 26, 18, 40, 12, 18, 28, 58, 8, 30, 30, 36, 16, 24, 20, 66, 16, 22, 24, 70, 12, 36, 36, 40, 18, 30, 24
OFFSET
1,2
LINKS
FORMULA
Let n = 2^k*m, GCD(m, 2) = 1. Then a(n) = phi((n + 1)/2) if k = 0, phi(n + 1) if k = 1 and (phi(n + 1))/2 if k > 1. - Vladeta Jovovic, Feb 06 2002
a(n) = A000010(A000217(n))/A000010(n). - Michel Marcus, Nov 04 2013
EXAMPLE
a(6) = 6; phi(6*7/2)/phi(6) = phi(21)/phi(6) = 12/2 = 6.
MAPLE
with(numtheory); A067541:=n->phi(n*(n+1)/2)/phi(n); seq(A067541(k), k=1..100); # Wesley Ivan Hurt, Nov 04 2013
MATHEMATICA
Table[EulerPhi[n*(n+1)/2]/EulerPhi[n], {n, 1, 100}] (* Vincenzo Librandi, Mar 05 2013 *)
PROG
(PARI) a(n)=eulerphi(n*(n+1)/2)/eulerphi(n) \\ Charles R Greathouse IV, Mar 05 2013
(Magma) [EulerPhi(n*(n+1) div 2)/EulerPhi(n): n in [1..100]]; // Vincenzo Librandi, Mar 05 2013
CROSSREFS
Sequence in context: A093659 A306714 A200745 * A054706 A351082 A334500
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 28 2002
STATUS
approved