[go: up one dir, main page]

login
A067338
Divide the natural numbers in sets of consecutive numbers, starting with {1,2}, each set with number of elements equal to the sum of elements of the preceding set. The number of elements in the n-th set gives a(n).
3
2, 3, 12, 138, 11937, 73102188, 2672848933402062, 3572060905817696883164853272313, 6379809557435582128907282471156933713351634534272773703460187
OFFSET
1,1
COMMENTS
The sets begin {1,2}, {3,4,5}, {6,7,8,...,17}, ...
Starting with {1}, one would get {1}, {2}, {3,4}, {5,6,7, 8,9,10, 11} ... with sums (1,2,7,56, 2212 ...) = A002658. - M. F. Hasler, Jan 21 2015
FORMULA
a(n)= a(n-1) *( 1 +2*[a(1)+a(2)+...+a(n-2)] +a(n-1) )/2. - Corrected by R. J. Mathar, Jan 22 2015
a(n) = a(n-1)*(2*a(n-1) + a(n-2)*a(n-1) + a(n-2)^2)/(2*a(n-2)). - David W. Wilson, Jan 22 2015
a(n+1) = a(n)*(2*A067339(n)-a(n)+1)/2. - M. F. Hasler, Jan 23 2015
a(n) ~ 2 * c^(2^n), where c = 1.312718001584962838462131787518361199185077166417566246117... . - Vaclav Kotesovec, Dec 09 2015
MAPLE
# Return [start, number, sum] of n-th group
A067338aux := proc(n)
local StrNumSu, Strt, Num, Su ;
option remember;
if n = 1 then
return [1, 2, 3] ;
else
strNumSu := procname(n-1) ;
Strt := strNumSu[1]+strNumSu[2] ;
Num := strNumSu[3] ;
Su := Num*(Num+2*Strt-1)/2 ;
return [Strt, Num, Su] ;
end if;
end proc:
A067338 := proc(n)
A067338aux(n)[2] ;
end proc:
seq(A067338(n), n=1..10) ; # R. J. Mathar, Jan 21 2015
MATHEMATICA
RecurrenceTable[{a[n] == a[n-1]*(2*a[n-1] + a[n-2]*a[n-1] + a[n-2]^2)/(2*a[n-2]), a[1]==2, a[2]==3}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 09 2015 *)
PROG
(PARI) print1(a=n=2); for(i=2, 9, print1(", "n=n*(a+a-n+1)/2); a+=n) \\ M. F. Hasler, Jan 21 2015
(Magma) I:=[2, 3]; [n le 2 select I[n] else Self(n-1)*(2*Self(n-1) + Self(n-2)*Self(n-1) + Self(n-2)^2)/(2*Self(n-2)): n in [1..10]]; // Vincenzo Librandi, Jan 23 2015
CROSSREFS
Cf. A067339 (partial sums).
Sequence in context: A245584 A102878 A132501 * A012713 A009814 A362289
KEYWORD
easy,nonn
AUTHOR
Floor van Lamoen, Jan 16 2002
EXTENSIONS
Corrected and extended by Harvey P. Dale and M. F. Hasler, Jan 21 2015
STATUS
approved