[go: up one dir, main page]

login
A064055
Ninth column of quadrinomial coefficients.
2
3, 31, 155, 546, 1554, 3823, 8451, 17205, 32802, 59268, 102388, 170261, 273975, 428418, 653242, 973998, 1423461, 2043165, 2885169, 4014076, 5509328, 7467801, 10006725, 13266955, 17416620, 22655178, 29217906
OFFSET
0,1
FORMULA
a(n)= A008287(n+3, 8)= binomial(n+3, 3)*(n^5+46*n^4+875*n^3+7118*n^2+23880*n+20160)/(8!/3!), n >= 0.
G.f.: (3+4*x-16*x^2+15*x^3-6*x^4+x^5 )/(1-x)^9, numerator polynomial is N4(8, x) from the array A063421.
a(n) = 3*C(n+3,3) + 19*C(n+3,4) + 30*C(n+3,5) + 21*C(n+3,6) + 7*C(n+3,7) + C(n+3,8) (see comment in A071675). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
MATHEMATICA
Table[3Binomial[n+3, 3]+19Binomial[n+3, 4]+30Binomial[n+3, 5]+21 Binomial[n+3, 6]+ 7 Binomial[n+3, 7]+ Binomial[n+3, 8], {n, 0, 30}] (* Harvey P. Dale, Apr 30 2022 *)
CROSSREFS
A001919 (eighth column).
Sequence in context: A069615 A087389 A294394 * A227049 A078604 A195603
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 29 2001
STATUS
approved