OFFSET
3,1
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 3..1000
L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
R. K. Guy, Letter to N. J. A. Sloane, 1987
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
FORMULA
a(n) = A008287(n, 7) = binomial(n+2, 5)*(n^2+21*n+180 )/42, n >= 3.
G.f.: (x^3)*(6-8*x+3*x^2 )/(1-x)^8. Numerator polynomial is N4(7, x) from array A063421.
a(n) = n(n^2-1)(n^2-4)(n^2+21n+180)/5040. - Emeric Deutsch, Jan 27 2005
a(n) = 6*C(n,3) + 16*C(n,4) + 15*C(n,5) + 6*C(n,6) + C(n,7) (see comment in A071675). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(3)=6, a(4)=40, a(5)=155, a(6)=456, a(7)=1128, a(8)=2472, a(9)=4950, a(10)=9240, a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8). - Harvey P. Dale, Mar 27 2013
MAPLE
seq(n*(n^2-1)*(n^2-4)*(n^2+21*n+180)/5040, n=3..34); # Emeric Deutsch, Jan 27 2005
A001919:=(3*z**2-8*z+6)/(z-1)**8; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[n*(n^2 - 1)*(n^2 - 4)*(n^2 + 21*n + 180)/5040, {n, 3, 50}] (* T. D. Noe, Aug 17 2012 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {6, 40, 155, 456, 1128, 2472, 4950, 9240}, 40] (* Harvey P. Dale, Mar 27 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Jan 27 2005
STATUS
approved