[go: up one dir, main page]

login
A063643
Primes with 2 representations: p*q - 2 = u*v + 2 where p, q, u and v are primes.
14
23, 37, 53, 67, 89, 113, 131, 157, 211, 251, 293, 307, 337, 379, 409, 449, 487, 491, 499, 503, 631, 683, 701, 719, 751, 769, 787, 919, 941, 953, 991, 1009, 1039, 1117, 1193, 1201, 1259, 1381, 1399, 1439, 1459, 1471, 1499, 1511, 1567, 1709, 1733, 1759, 1801
OFFSET
1,1
COMMENTS
Or, primes p such that p+/-2 are semiprimes. - Zak Seidov, Mar 08 2006
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 term from T. D. Noe)
FORMULA
Intersection of A063637 and A063638. - Zak Seidov, Mar 14 2011
EXAMPLE
A063643(25) = 751: 751 = A063637(60)= 753 - 2 = 3*251 - 2, 751 = A063638(55)= 749 + 2 = 7*107 + 2.
MAPLE
q:= p-> isprime(p) and map(numtheory[bigomega], {p-2, p+2})={2}:
select(q, [$2..2000])[]; # Alois P. Heinz, Apr 01 2024
MATHEMATICA
Select[Prime[Range[300]], PrimeOmega[#+2] == PrimeOmega[#-2] == 2&] (* Jean-François Alcover, Mar 02 2019 *)
PROG
(PARI) { n=0; for (m=2, 10^9, p=prime(m); if (bigomega(p + 2) == 2 && bigomega(p - 2) == 2, write("b063643.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 26 2009
CROSSREFS
Cf. A109611 (Chen primes).
Sequence in context: A055114 A329262 A268343 * A361530 A057876 A244282
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 21 2001
STATUS
approved