[go: up one dir, main page]

login
A061548
Numerator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p = 1/4.
6
1, 3, 35, 231, 6435, 46189, 676039, 5014575, 300540195, 2268783825, 34461632205, 263012370465, 8061900920775, 61989816618513, 956086325095055, 7391536347803839, 916312070471295267, 7113260368810144185, 110628135069209194801, 861577581086657669325, 26876802183334044115405
OFFSET
0,2
LINKS
Robert M. Kozelka, Grade Point Averages and the Central Limit Theorem, American Mathematical Monthly. Nov. 1979 (86:9) pp. 773-7.
FORMULA
a(n) = numerator(binomial(2*n-1/2, -1/2)).
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = numerator((4*n)!/(2^(4*n)*(2*n)!^2)).
a(n) = 2*A001448(n)/ A117973(n). (End)
a(n) = A001448(n)/A001316(n). - Peter Luschny, Mar 23 2014
a(n) is the numerator of the coefficient of power series in x around x=0 of sqrt(1 + sqrt(1 - x))/(sqrt(2)*sqrt(1 - x)). - Karol A. Penson, Apr 16 2018
EXAMPLE
For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The numerator of this term is 3, which is the second term of the sequence.
MAPLE
seq(numer(binomial(2*n-1/2, -1/2)), n=0..20);
MATHEMATICA
Table[Numerator[(4*n) !/(2^(4*n)*(2*n) !^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)
Table[Numerator[SeriesCoefficient[Series[(Sqrt[1 + Sqrt[1 - x]]/Sqrt[2 - 2* x]), {x, 0, n}], n]], {n, 0, 20}]. (* Karol A. Penson, Apr 16 2018 *)
PROG
(Sage)
def A061548(n): return binomial(4*n, 2*n)/2^sum(n.digits(2))
[A061548(n) for n in (0..20)] # Peter Luschny, Mar 23 2014
(PARI) for(n=0, 20, print1(numerator((4*n)!/(2^(4*n)*(2*n)!^2)), ", ")) \\ Indranil Ghosh, Mar 11 2017
(Python)
import math
from fractions import gcd
f = math.factorial
def A061548(n): return f(4*n) / gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017
(Magma)
A061548:= func< n | Numerator(Binomial(4*n, 2*n)/4^n) >;
[A061548(n): n in [0..25]]; // G. C. Greubel, Oct 19 2024
CROSSREFS
Bisection of A001790.
Sequence in context: A130061 A368391 A274875 * A019273 A271209 A202883
KEYWORD
nonn,frac,easy
AUTHOR
Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001
EXTENSIONS
More terms from Asher Auel, May 20 2001
STATUS
approved