[go: up one dir, main page]

login
A060920
Bisection of Fibonacci triangle A037027: even-indexed members of column sequences of A037027 (not counting leading zeros).
10
1, 2, 1, 5, 5, 1, 13, 20, 9, 1, 34, 71, 51, 14, 1, 89, 235, 233, 105, 20, 1, 233, 744, 942, 594, 190, 27, 1, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1, 4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1
OFFSET
0,2
COMMENTS
Companion triangle (odd-indexed members) A060921.
LINKS
Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, Nov. 2005, pp. 359-370.
FORMULA
T(n, k) = A037027(2*n-k, k).
T(n, k) = ((2*(n-k) + 1)*A060921(n-1, k-1) + 4*n*T(n-1, k-1))/(5*k), n >= k >= 1.
T(n, 0) = F(n)^2 + F(n+1)^2 = A001519(n), with the Fibonacci numbers F(n) = A000045(n).
Sum_{k=0..n} T(n, k) = (2^(2*n + 1) + 1)/3 = A007583(n).
G.f. for column m >= 0: x^m*pFe(m+1, x)/(1-3*x+x^2)^(m+1), where pFe(n, x) := Sum_{m=0..n} A061176(n, m)*x^m (row polynomials of signed triangle A061176).
G.f.: (1-x*(1+y))/(1 - (3+2*y)*x + (1+y)^2*x^2). - Vladeta Jovovic, Oct 11 2003
EXAMPLE
Triangle begins as:
1;
2, 1;
5, 5, 1;
13, 20, 9, 1;
34, 71, 51, 14, 1;
89, 235, 233, 105, 20, 1;
233, 744, 942, 594, 190, 27, 1;
610, 2285, 3522, 2860, 1295, 315, 35, 1;
1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1;
4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1;
10946, 59155, 140109, 190570, 163730, 91959, 33705, 7776, 1035, 65, 1;
MATHEMATICA
A060920[n_, k_]:= Sum[Binomial[2*n-k-j, j]*Binomial[2*n-k-2*j, k], {j, 0, 2*n-k}];
Table[A060920[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
PROG
(Magma)
A060920:= func< n, k | (&+[Binomial(2*n-k-j, j)*Binomial(2*n-k-2*j, k): j in [0..2*n-k]]) >;
[A060920(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
(Sage)
def A060920(n, k): return sum(binomial(2*n-k-j, j)*binomial(2*n-k-2*j, k) for j in (0..2*n-k))
flatten([[A060920(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021
CROSSREFS
Column sequences: A001519 (k=0), A054444 (k=1), A061178 (k=2), A061179 (k=3), A061180 (k=4), A061181 (k=5).
Sequence in context: A209148 A126124 A123971 * A107842 A126216 A124733
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved