OFFSET
0,2
COMMENTS
Companion triangle (odd-indexed members) A060921.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, Nov. 2005, pp. 359-370.
FORMULA
T(n, k) = A037027(2*n-k, k).
T(n, k) = ((2*(n-k) + 1)*A060921(n-1, k-1) + 4*n*T(n-1, k-1))/(5*k), n >= k >= 1.
Sum_{k=0..n} T(n, k) = (2^(2*n + 1) + 1)/3 = A007583(n).
G.f. for column m >= 0: x^m*pFe(m+1, x)/(1-3*x+x^2)^(m+1), where pFe(n, x) := Sum_{m=0..n} A061176(n, m)*x^m (row polynomials of signed triangle A061176).
G.f.: (1-x*(1+y))/(1 - (3+2*y)*x + (1+y)^2*x^2). - Vladeta Jovovic, Oct 11 2003
EXAMPLE
Triangle begins as:
1;
2, 1;
5, 5, 1;
13, 20, 9, 1;
34, 71, 51, 14, 1;
89, 235, 233, 105, 20, 1;
233, 744, 942, 594, 190, 27, 1;
610, 2285, 3522, 2860, 1295, 315, 35, 1;
1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1;
4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1;
10946, 59155, 140109, 190570, 163730, 91959, 33705, 7776, 1035, 65, 1;
MATHEMATICA
A060920[n_, k_]:= Sum[Binomial[2*n-k-j, j]*Binomial[2*n-k-2*j, k], {j, 0, 2*n-k}];
Table[A060920[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
PROG
(Magma)
A060920:= func< n, k | (&+[Binomial(2*n-k-j, j)*Binomial(2*n-k-2*j, k): j in [0..2*n-k]]) >;
[A060920(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
(Sage)
def A060920(n, k): return sum(binomial(2*n-k-j, j)*binomial(2*n-k-2*j, k) for j in (0..2*n-k))
flatten([[A060920(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved