[go: up one dir, main page]

login
A060883
a(n) = n^6 + n^3 + 1.
8
1, 3, 73, 757, 4161, 15751, 46873, 117993, 262657, 532171, 1001001, 1772893, 2987713, 4829007, 7532281, 11394001, 16781313, 24142483, 34018057, 47052741, 64008001, 85775383, 113390553, 148048057, 191116801, 244156251, 308933353
OFFSET
0,2
COMMENTS
a(n) = Phi_9(n) where Phi_k is the k-th cyclotomic polynomial.
FORMULA
G.f.: (1-4*x+73*x^2+274*x^3+325*x^4+50*x^5+x^6)/(1-x)^7. [Colin Barker, Apr 21 2012]
MAPLE
A060883 := proc(n)
numtheory[cyclotomic](9, n) ;
end proc:
seq(A060883(n), n=0..20) ; # R. J. Mathar, Feb 07 2014
MATHEMATICA
Table[n^6+n^3+1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 3, 73, 757, 4161, 15751, 46873}, 30] (* Harvey P. Dale, Jul 07 2019 *)
PROG
(PARI) a(n)={n^6 + n^3 + 1} \\ Harry J. Smith, Jul 13 2009
CROSSREFS
Sequence in context: A054689 A371511 A256144 * A162601 A173807 A093165
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 05 2001
STATUS
approved