OFFSET
0,2
COMMENTS
a(n) = Phi_9(n) where Phi_k is the k-th cyclotomic polynomial.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: (1-4*x+73*x^2+274*x^3+325*x^4+50*x^5+x^6)/(1-x)^7. [Colin Barker, Apr 21 2012]
MAPLE
A060883 := proc(n)
numtheory[cyclotomic](9, n) ;
end proc:
seq(A060883(n), n=0..20) ; # R. J. Mathar, Feb 07 2014
MATHEMATICA
Table[n^6+n^3+1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 3, 73, 757, 4161, 15751, 46873}, 30] (* Harvey P. Dale, Jul 07 2019 *)
PROG
(PARI) a(n)={n^6 + n^3 + 1} \\ Harry J. Smith, Jul 13 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 05 2001
STATUS
approved