OFFSET
0,3
COMMENTS
A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
LINKS
FORMULA
G.f.: (2*x^5 - 4*x^4 + 4*x^3 - 4*x^2 + 2*x - 1)/(x - 1)^3.
E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
From Marco RipĂ , Aug 20 2015: (Start)
a(n) = ceiling( (1/2)*(3*n^2 - 10*n + 9)/(n - 2) ) + floor( (3/2)*(n-1)^2 ) - n^2 + 3*n - 3 with n > 2, a(0) = a(1) = 1, a(2) = 4.
a(n) = n*(n + 3)/2 - 3 for n > 2.
a(n) = A046691(n-1) for n > 2. (End)
MAPLE
gf := (2*x^5 - 4*x^4 + 4*x^3 - 4*x^2 + 2*x - 1)/(x - 1)^3: s := series(gf, x, 100): for i from 0 to 100 do printf(`%d, `, coeff(s, x, i)) od:
MATHEMATICA
Join[{1, 1, 4}, Table[n (n + 3)/2 - 3, {n, 3, 60}]] (* Bruno Berselli, Aug 20 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Apr 04 2001
EXTENSIONS
More terms from James A. Sellers, Apr 04 2001
STATUS
approved