[go: up one dir, main page]

login
A060432
Partial sums of A002024.
14
1, 3, 5, 8, 11, 14, 18, 22, 26, 30, 35, 40, 45, 50, 55, 61, 67, 73, 79, 85, 91, 98, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 188, 196, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 396, 407, 418
OFFSET
1,2
COMMENTS
In other words, first differences give A002024.
Equals A010054 convolved with [1, 2, 3, ...]. - Gary W. Adamson, Mar 16 2010
LINKS
Gorka Zamora-López and Romain Brasselet, Sizing the length of complex networks, arXiv:1810.12825 [physics.soc-ph], 2018.
FORMULA
Let f(n) = floor(1/2 + sqrt(2*n)), then this function is S(n) = f(1) + f(2) + f(3) + ... + f(n).
a(n) is asymptotic to c*n^(3/2) with c=0.9428.... - Benoit Cloitre, Dec 18 2002
a(n) is asymptotic to c*n^(3/2) with c = (2/3)*sqrt(2) = .942809.... - Franklin T. Adams-Watters, Sep 07 2006
Set R = round(sqrt(2*n)), then a(n) = ((6*n+1)*R-R^3)/6. - Gerald Hillier, Nov 28 2008
G.f.: W(0)/(2*(1-x)^2), where W(k) = 1 + 1/( 1 - x^(k+1)/( x^(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013
a(n) = A000330(A003056(n)) + (A003056(n) + 1) * (n - A057944(n)). This represents a closed form, because all of the constituent sequences (i.e., A003056, A000330, A057944) have a known closed form. - Peter Kagey, Jan 28 2016
G.f.: x^(7/8)*Theta_2(0,x^(1/2))/(2*(1-x)^2) where Theta_2 is a Jacobi theta function. - Robert Israel, Jan 28 2016
G.f.: (x/(1 - x)^2)*Product_{k>=1} (1 - x^(2*k))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, May 30 2017
a(n) = n*(k+1)-k*(k+1)*(k+2)/6 where k = A003056(n) is the largest integer such that k*(k+1)/2 <= n. - Bogdan Blaga, Feb 04 2021
EXAMPLE
a(7) = 1 + 2 + 2 + 3 + 3 + 3 + 4 = 18.
MAPLE
ListTools:-PartialSums([seq(n$n, n=1..10)]); # Robert Israel, Jan 28 2016
MATHEMATICA
a[n_] := Sum[Floor[1/2 + Sqrt[2*k]], {k, 1, n}]; Array[a, 60] (* Jean-François Alcover, Jan 10 2016 *)
PROG
(PARI) f(n) = floor(1/2+sqrt(2*n))
for(n=1, 100, print1(sum(k=1, n, f(k)), ", "))
(PARI) { default(realprecision, 100); for (n=1, 1000, a=sum(k=1, n, floor(1/2 + sqrt(2*k))); write("b060432.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 05 2009
(Haskell)
a060432 n = sum $ zipWith (*) [n, n-1..1] a010054_list
-- Reinhard Zumkeller, Dec 17 2011
(Python)
from math import isqrt
def A060432(n): return (k:=(r:=isqrt(m:=n+1<<1))+int((m<<2)>(r<<2)*(r+1)+1)-1)*(k*(-k - 3) + 6*n - 2)//6 + n # Chai Wah Wu, Oct 16 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert A. Stump (bobess(AT)netzero.net), Apr 06 2001
EXTENSIONS
More terms from Jason Earls, Jan 08 2002
STATUS
approved