OFFSET
1,1
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 39, p. 15, Ellipses, Paris 2008.
J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 395 pp. 55; 218, Ellipses Paris 2004.
Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 46-47.
Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, pp. 31, 75.
LINKS
Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019.
Jon Grantham and Andrew Granville, Fibonacci primes, primes of the form 2^n-k and beyond, arXiv:2307.07894 [math.NT], 2023.
Henri Lifchitz and Renaud Lifchitz, Search for 2^n-7, PRP Top Records.
EXAMPLE
k = 39, 2^39 - 7 = 549755813881 is prime.
MATHEMATICA
Select[Range[3, 20000], PrimeQ[2^# - 7] &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
PROG
(PARI) is(n)=isprime(2^n-7) \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Andrey V. Kulsha, Feb 02 2001
EXTENSIONS
a(11) from Lelio R Paula, added by Max Alekseyev, Oct 25 2015
a(12) from Jon Grantham, Aug 09 2023
STATUS
approved