[go: up one dir, main page]

login
A059404
Numbers with different exponents in their prime factorizations.
29
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189
OFFSET
1,1
COMMENTS
Former name: Numbers k such that k/(largest power of squarefree kernel of k) is larger than 1.
Complement of A072774 (powers of squarefree numbers).
Also numbers k = p(1)^alpha(1)* ... * p(r)^alpha(r) such that RootMeanSquare(alpha(1), ..., alpha(r)) is not an integer. - Ctibor O. Zizka, Sep 19 2008
LINKS
Donald Alan Morrison, Table of n, a(n) for n = 1..10000
Donald Alan Morrison, Sage program
FORMULA
A062760(a(n)) > 1, i.e., a(n)/(A007947(a(n))^A051904(a(n)) = a(n)/A062759(n) > 1.
A071625(a(n)) > 1. - Michael S. Branicky, Sep 01 2022
EXAMPLE
440 is in the sequence because 440 = 2^3*5*11 and it has two distinct exponents, 3 and 1.
PROG
(PARI) is(n)=#Set(factor(n)[, 2])>1 \\ Charles R Greathouse IV, Sep 18 2015
(Python)
from sympy import factorint
def ok(n): return len(set(factorint(n).values())) > 1
print([k for k in range(190) if ok(k)]) # Michael S. Branicky, Sep 01 2022
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A059404(n):
def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
def f(x): return n+1-(y:=x.bit_length())+sum(g(integer_nthroot(x, k)[0]) for k in range(1, y))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 19 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Jul 18 2001
STATUS
approved