[go: up one dir, main page]

login
A056273
Word structures of length n using a 6-ary alphabet.
21
1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, 114700315, 676207628, 4010090463, 23874362200, 142508723651, 852124263684, 5101098232519, 30560194493456, 183176170057707
OFFSET
0,3
COMMENTS
Set partitions of the n-set into at most 6 parts; also restricted growth strings (RGS) with six letters s(1),s(2),...,s(6) where the first occurrence of s(j) precedes the first occurrence of s(k) for all j < k. - Joerg Arndt, Jul 06 2011
Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4,5,6}^* (i.e., number of strings of length n in L) described by regular expression with c=6: Sum_{i=1..c}(Product_{j=1..i} (j(1+..+j)*) where Sum stands for union and Product for concatenation. - Nelma Moreira, Oct 10 2004
Word structures of length n using an N-ary alphabet are generated by taking M^n* the vector [(N 1's),0,0,0,...], leftmost column term = a(n+1). In the case of A056273, the vector = [1,1,1,1,1,1,0,0,0,...]. As the vector approaches all 1's, the leftmost column terms approach A000110, the Bell sequence. - Gary W. Adamson, Jun 23 2011
From Gary W. Adamson, Jul 06 2011: (Start)
Construct an infinite array of sequences representing word structures of length n using an N-ary alphabet as follows:
.
1, 1, 1, 1, 1, 1, 1, 1, ...; N=1, A000012
1, 2, 4, 8, 16, 32, 64, 128, ...; N=2, A000079
1, 2, 5, 14, 41, 122, 365, 1094, ...; N=3, A007051
1, 2, 5, 15, 51, 187, 715, 2795, ...; N=4, A007581
1, 2, 5, 15, 52, 202, 855, 3845, ...; N=5, A056272
1, 2, 5, 15, 52, 203, 876, 4111, ...; N=6, A056273
...
The sequences tend to A000110. Finite differences of columns reinterpreted as rows generate A008277 as a triangle: (1; 1,1; 1,3,1; 1,7,6,1; ...). (End)
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
Olli-Samuli Lehmus, Optimized Static Allocation of Signal Processing Tasks onto Signal Processing Cores, Master's Thesis, Aalto Univ. (Finland, 2023). See p. 35.
Nelma Moreira and Rogerio Reis, dcc-2004-07.ps
Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto.
Nelma Moreira and Rogerio Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
FORMULA
a(n) = Sum_{k=0..6} Stirling2(n, k).
For n > 0, a(n) = (1/6!)*(6^n + 15*4^n + 40*3^n + 135*2^n + 264). - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For n > 0 and c = 6:
a(n) = (c^n)/c! + Sum_{k=0..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))).
a(n) = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1) = 1; g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! if c>1. For 2 <= k <= c: g(k, c) = g(k-1, c-1)/k if c>1. (End)
G.f.: (1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2x)*(1-3x)*(1-4x)*(1-6x)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009] [Adapted to offset 0 by Robert A. Russell, Nov 06 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=6. - Robert A. Russell, Apr 25 2018
E.g.f.: (265 + 264*exp(x) + 135*exp(x*2) + 40*exp(x*3) + 15*exp(x*4) + exp(6*x))/6!. - Peter Luschny, Nov 06 2018
EXAMPLE
For a(4) = 15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
MAPLE
egf := (265+264*exp(x)+135*exp(x*2)+40*exp(x*3)+15*exp(x*4)+exp(6*x))/6!:
ser := series(egf, x, 30): seq(n!*coeff(ser, x, n), n=0..22); # Peter Luschny, Nov 06 2018
MATHEMATICA
Table[Sum[StirlingS2[n, k], {k, 0, 6}], {n, 0, 30}] (* or *) LinearRecurrence[ {16, -95, 260, -324, 144}, {1, 1, 2, 5, 15, 52}, 30] (* Harvey P. Dale, Jun 05 2015 *)
PROG
(PARI) Vec((1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Nov 07 2018
(GAP) List([0..25], n->Sum([0..6], k->Stirling2(n, k))); # Muniru A Asiru, Oct 30 2018
(Magma) [(&+[StirlingSecond(n, i): i in [0..6]]): n in [0..30]]; // Vincenzo Librandi, Nov 07 2018
CROSSREFS
A row of the array in A278984 and A320955.
Cf. A056325 (unoriented), A320936 (chiral), A305752 (chiral).
Sequence in context: A287277 A287255 A284727 * A141080 A366774 A287667
KEYWORD
nonn,easy
EXTENSIONS
a(0)=1 prepended by Robert A. Russell, Nov 06 2018
STATUS
approved