[go: up one dir, main page]

login
A054869
Digits of an idempotent 6-adic number.
6
3, 1, 2, 0, 5, 3, 1, 2, 2, 2, 5, 1, 5, 5, 1, 4, 1, 3, 1, 2, 5, 5, 5, 0, 5, 2, 5, 5, 5, 3, 1, 4, 3, 3, 0, 4, 2, 2, 4, 0, 1, 3, 3, 1, 4, 0, 2, 0, 1, 2, 5, 2, 4, 0, 2, 3, 3, 0, 3, 4, 5, 5, 2, 5, 5, 4, 3, 2, 3, 1, 5, 4, 5, 4, 0, 1, 1, 0, 4, 2, 0, 1, 3, 0, 1, 5, 0, 4, 3, 5, 0, 1, 0, 2, 4, 0, 3, 4, 2
OFFSET
0,1
COMMENTS
( a(0) + a(1)*6 + a(2)*6^2 + ... )^k = a(0) + a(1)*6 + a(2)*6^2 + ... for each k. Apart from 0 and 1, in base 6 there are only 2 numbers with this property. For the other see A055620.
REFERENCES
V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
LINKS
V. deGuerre and R. A. Fairbairn, Automorphic numbers, Jnl. Rec. Math., 1 (No. 3, 1968), 173-179
FORMULA
a(n) == 3^(2^n) (mod 6^n). - Robert Dawson, Oct 28 2022
PROG
(Python)
n=10000; res=1-pow((3**n+1)//2, n, 3**n)*2**n
for i in range(n):print(i, res%6); res//=6
# Kenny Lau, Jun 09 2018
CROSSREFS
The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.
Sequence in context: A265910 A222212 A318526 * A201671 A226590 A261349
KEYWORD
nonn,base
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
STATUS
approved