[go: up one dir, main page]

login
A054776
a(n) = 3*n*(3*n-1)*(3*n-2).
5
0, 6, 120, 504, 1320, 2730, 4896, 7980, 12144, 17550, 24360, 32736, 42840, 54834, 68880, 85140, 103776, 124950, 148824, 175560, 205320, 238266, 274560, 314364, 357840, 405150, 456456, 511920, 571704, 635970, 704880, 778596, 857280, 941094
OFFSET
0,2
REFERENCES
L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 46.
Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 268.
LINKS
Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
FORMULA
a(n) = A007531(3n-2) = 6*A006566(n).
Sum_{n>=1} 1/a(n) = Pi*sqrt(3)/12 - log(3)/4 = 0.178796768891527... [Jolley eq. 250]. - Benoit Cloitre, Apr 05 2002
G.f.: 6*x*(1+16*x+10*x^2)/(1-x)^4.
E.g.f.: 3*exp(x)*x*(2 + 18x + 9x^2). - Indranil Ghosh, Apr 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - Pi/(6*sqrt(3)). - Amiram Eldar, Mar 08 2022
MAPLE
A054776:=n->3*n*(3*n-1)*(3*n-2): seq(A054776(n), n=0..50); # Wesley Ivan Hurt, Apr 14 2017
PROG
(PARI) a(n)=3*n*(3*n-1)*(3*n-2)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, May 19 2000
STATUS
approved