[go: up one dir, main page]

login
A054406
Beatty sequence for (3+sqrt 3)/2; complement of A022838.
29
2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 26, 28, 30, 33, 35, 37, 40, 42, 44, 47, 49, 52, 54, 56, 59, 61, 63, 66, 68, 70, 73, 75, 78, 80, 82, 85, 87, 89, 92, 94, 97, 99, 101, 104, 106, 108, 111, 113, 115, 118, 120, 123, 125, 127, 130, 132, 134, 137, 139, 141, 144, 146
OFFSET
1,1
COMMENTS
Numbers k such that A194979(k+1) = A194979(k). - Clark Kimberling, Dec 02 2014
LINKS
Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
Eric Weisstein's World of Mathematics, Beatty Sequence
MAPLE
A054406 := proc(n) n*(3+sqrt(3))/2 ; floor(%) ; end proc: # R. J. Mathar, Feb 26 2011
MATHEMATICA
a054406[n_Integer] := Floor[# (3 + Sqrt[3])/2] & /@ Range[n]; a054406[62] (* Michael De Vlieger, Dec 14 2014 *)
PROG
(Magma) [Floor(n*(3+Sqrt(3))/2): n in [1..70]]; // Vincenzo Librandi, Oct 25 2011
(PARI) is(n)=sqrtint((n+1)^2\3)==sqrtint(n^2\3) \\ Charles R Greathouse IV, Nov 01 2021
CROSSREFS
Cf. A194143 (partial sums), A182778 (even bisection), A184799 (prime terms).
Cf. A022838 (complement), A026255.
Cf. A194979.
Sequence in context: A024812 A047349 A329842 * A292647 A356085 A307645
KEYWORD
nonn
STATUS
approved