[go: up one dir, main page]

login
A054065
Fractal sequence induced by tau: for k >= 1, let p(k) be the permutation of 1,2,...,k obtained by ordering the fractional parts {h*tau} for h=1,2,...,k; then juxtapose p(1),p(2),p(3),...
12
1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, 3, 8, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9
OFFSET
1,2
EXAMPLE
p(1)=(1); p(2)=(2,1); p(3)=(2,1,3); p(4)=(2,4,1,3).
As a triangular array (see A194832), first nine rows:
1
2 1
2 1 3
2 4 1 3
5 2 4 1 3
5 2 4 1 6 3
5 2 7 4 1 6 3
5 2 7 4 1 6 3 8
5 2 7 4 9 1 6 3 8
MATHEMATICA
r = (1 + Sqrt[5])/2;
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A054065 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A054069 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A054068 *)
(* Clark Kimberling, Sep 03 2011 *)
Flatten[Table[Ordering[Table[FractionalPart[GoldenRatio k], {k, n}]], {n, 10}]] (* Birkas Gyorgy, Jun 30 2012 *)
CROSSREFS
Position of 1 in p(k) is given by A019446. Position of k in p(k) is given by A019587. For related arrays and sequences, see A194832.
Sequence in context: A194902 A194874 A194835 * A194868 A304574 A139024
KEYWORD
nonn
EXTENSIONS
Extended by Ray Chandler, Apr 18 2009
STATUS
approved