[go: up one dir, main page]

login
A053836
Sum of digits of n written in base 16.
13
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 6, 7
OFFSET
0,3
COMMENTS
a(n) = A138530(n,16) for n > 15. - Reinhard Zumkeller, Mar 26 2008
LINKS
Eric Weisstein's World of Mathematics, Hexadecimal
Eric Weisstein's World of Mathematics, Digit Sum
FORMULA
a(0)=0, a(16*n+i)=a(n)+i 0<=i<=15; a(n)=n-15*(sum(k>0, floor(n/16^k)). - Benoit Cloitre, Dec 19 2002
EXAMPLE
a(20) = 1 + 4 = 5 because 20 is written as "14" in base 16.
MATHEMATICA
Table[Plus @@ IntegerDigits[n, 16], {n, 0, 150}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%16, a(n-1)+1, a(n/16)))
(PARI) a(n) = sumdigits(n, 16); \\ Michel Marcus, Jan 19 2023
(Haskell)
a053836 n = q 0 $ divMod n 16 where
q r (0, d) = r + d
q r (m, d) = q (r + d) $ divMod m 16
-- Reinhard Zumkeller, May 15 2011
(Python)
def A053836(n): return sum(int(d, 16) for d in hex(n)[2:]) # Chai Wah Wu, Jan 19 2023
CROSSREFS
Sequence in context: A275993 A160700 A002377 * A025483 A053165 A056962
KEYWORD
base,nonn
AUTHOR
Henry Bottomley, Mar 28 2000
STATUS
approved