OFFSET
1,3
COMMENTS
Powers of 2 arise at the end of iteration chains without interruption. Analogous to A053025 and A053034. The order of speed of convergence is as follows: A000005 > A000010 > A051953: e.g., for 20! the lengths of the corresponding iteration chains are 6, 51, and 101, respectively.
Partial sums of A064415.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
FORMULA
EXAMPLE
For n=1, no iteration is needed, so a(1)=0;
for n=2, the initial value is 2! = 2, so phi() must be applied once, thus a(2)=1;
for n=8, the iteration chain is {40320, 9216, 3072, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1}; its length = 14 = a(8) + 1, so the number of iterations applied to reach 1 is a(8)=13.
MATHEMATICA
Table[Length@ NestWhileList[EulerPhi, n!, # > 1 &] - 1, {n, 61}] (* or *)
Table[Length@ FixedPointList[EulerPhi, n!] - 2, {n, 61}] (* Michael De Vlieger, Jan 01 2017 *)
PROG
(PARI) a(n) = {my(nb = 0, ns = n!); while (ns != 1, ns = eulerphi(ns); nb++); nb; } \\ Michel Marcus, Jan 01 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 25 2000
STATUS
approved