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Abstract 

Let (;?l (n) = (;?( n) where (;? is Euler's function, let (;?2( n) = (;?( (;?( n)) , 
etc. We prove several theorems about the normal order of (;?k(n) and state 
some open problems. In particular, we show that the normal order of 
(;?k(n)/(;?k+l(n) is ke"Ylogloglogn where I is Euler's constant. We also 
show that there is some positive constant c such that for all n, but for a 
set of asymptotic density 0 , there is some k with (;?k(n) divisible by every 
prime up to (logn)c. With k(n) the first subscript k with (;?k(n) = 1 , we 
show, conditional on a certain form of the Elliott-Halberstam conjecture, 
that there is some positive constant 0: such that k( n) has normal order 
0: log n . Let s( n) = 0'( n) - n where 0' is the sum of the divisors function, 
let s2(n) = s(s(n)) ,etc. We prove that s2(n)/s(n) = s(n)/n+o(l) on a set 
of asymptotic density 1 and conjecture the same is true for sk+1(n)/sk(n) 
for any fixed k . 

§1. Introduction 

Let (;?(n) = (;?l(n) denote Euler's phi-function and if (;?k-l(n) has already 
been defined, let (;?k(n) = (;?«(;?k-l(n)) . Ifn > 1, then n > (;?(n) . Thus the 
sequence n, (;?l (n), (;?2( n), ... is strictly decreasing until it reaches 1 when it 
becomes constant. Let k(n) = k be the least number such that (;?k(n) = 1 . 
Further, let k( 1) = 1. 
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Note that if n = 2i , then k(n) = j = (logn)/log2. Also if n = 2· 3i , 
then k(n) = j + 1 = r(1ogn)/log31 where rzl denotes the least integer 
2': z. It turns out that these two examples essentially demonstrate the 
extreme behavior of k(n) , for as Pillai [14] showed in 1929, 

r(1ogn)/log31 $ k(n) $ Wogn)/log21 (1.1) 

for all n . Further, by considering numbers n of the form 2° 3b it is easy to see 
that the set of numbers of the form k(n)/ log n is dense in [1/ log 3,1/ log 2] . 
What is still in doubt about k(n) is its average and normal behavior. We 
conjecture that there is some constant a such that k( n) '" a log n on a set 
of asymptotic density 1 . If this is true, then (1.1) immediately would imply 
that 

The function k( n) possesses more algebraic structure than is immediately 
apparent from its definition. Shapiro [16] has shown that the function 
g( n) := k( n) - 1 is additive and in fact satisfies the stronger relation 

g(mn) = g(m) + g(n) + l(m,n) 

for all natural numbers m, n where l(m,n) is 0 unless (m, n) is even in which 
case l(m,n) = 1 . 

Let F( n) denote the number of even terms of the sequence 

n, cp(n), CP2(n), .... 

Then F(n) = k(n) for n even and F(n) = k(n) -1 for n odd. It is not hard 
to show (we leave this for the reader) that the function F(n) is completely 
additive; that is, F(mn) = F(m) + F(n) for all natural numbers m, n . 
Note that F(2) = 1 and for p an odd prime, F(p) = F(p-l) . So in fact, we 
have an alternative definition of F that does not have anything to do with 
iterating the phi-function. Namely, F is the completely additive function 
which is defined inductively on the primes as follows: 

{ I, 
F(p) = F(p _ 1), 

if p = 2 
if p > 2. 

Thus our conjectures on the normal and average orders of k(n) can be 
equivalently put in terms of the normal and average orders of the func-
tion F(n). Using this translation of the problem, we are able to prove 
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these conjectures conditionally on a certain form of the Elliott-Halberstam 
conjecture. This conjecture states that for any A, 

I' 1I'(x') I x L..J max max 1I'(x ;k,a) - -(k) <A -A-' 
(0,k)=1 cp log x 

(1.2) 

where 1I'(x; k, a) denotes the number of primes p:$ x with p == a (mod k) , 
where 11'( x) is the number of primes p :$ x , and where Q is some function of 
the form x 1- 0 (1) . This conjecture for Q = X/10gB X , which was the original 
conjecture of Elliott and Halberstam, was recently disproved in [4], while in 
[5] the conjecture is disproved for Q = x / exp { c(log log x)2 / log log log x} 
for some positive constant c. But presumably, if Q = x1- f (Z:) and (x) tends 
to 0 slowly enough, then (1.2) holds. In section 2 below, we show that F(n) 
(and thus k(n)) possesses normal and average order alogn provided (1.2) 
holds for Q = x1-f(Z:) with (x) = (10glogx)-2. Further we can weaken 
(1.2) by deleting the double max (letting x' = x and a = 1), by restricting 
k to integers with at most two prime factors, and taking A = 2 . 

Short of proving our conjecture on the normal order of k( n) uncondition-
ally, there are still many interesting questions about the normal behavior 
of the functions CPk(n) . In 1928, Schoenberg [15] showed that n/cp(n) has 
a distribution function. That is, D",(u), defined as the asymptotic density 
of the set of n with n/cp(n) :$ u, exists for every u. In addition, D",(u) is 
continuous and strictly increasing on [1,00) , with asymptotic limit 1 . 

It turns out that the situation for the higher iterates of cp is much simpler. 
We show below that the normal order of CPk(n)/CPk+1(n) is 

ke"Y log log log n, 

where 'Y is Euler's constant, for each fixed k 1 . In fact, this result 
continues to hold true if k is allowed to tend to infinity at a modest rate. 
(For fixed k , this result was stated without proof in [7].) 

As a corollary, we have that the set 

{n : n/cp"+1(n) :$ uk!ek"Y(logloglogn)k} 

has asymptotic density D",(u) for every integer k 0 and for every real 
number u. 

It is well known that the maximal order of n/cp( n) is e"Y log log n but that 
very few integers n have n/cp(n) this order of magnitude. We show below 
the existence of a positive constant c such that 
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holds for a set of n of asymptotic density 1 . In fact a stronger result is 
true. We show the existence of a positive constant c' such that the set of 
n for which there is a k with <;'1: ( n) divisible by every prime up to (log n )Cl 
has asymptotic density 1 . 

The following two conjectures are perhaps tractable, but so far have 
resisted our efforts. We define 

<II(n) = n II <;'I:(n). 

Conjecture 1. For each prime p, let N(x,p) denote the number ofn x 
with pi <II(n). Then for every f. > 0, N(x,p) = o(x) uniformly in the region 
p> (IogX)1+f and N(x,p) "" x uniformly in the region p < (logX)l-f. 

Conjecture 2. For each f. > 0 , the upper asymptotic density of the set of 
n with the property that the largest prime factor of <;'1: (n) exceeds nf tends 
toOask-+oo. 

Concerning Conjecture 1, we show below that for every n , the number 
of distinct prime factors of <II(n) is at most r(logn)/log21 . Thus for each 
f. > 0 and all x xo(f.) , there is no n x with <II(n) divisible by every 
prime p (log x) 1+f. However, we not only cannot prove the first assertion 
in Conjecture 1 for every f. > 0, we cannot prove it for any specific choice 
of f. , even for very large choices. From our theorem mentioned above 
on <;'I:(n) being divisible by every prime up to (log n)C/, it follows that if 
o < c < c' , then N(x,p) "" x uniformly for p < (logxY. The second 
assertion in Conjecture 1 has both stronger and weaker versions that may 
be worth stating. The stronger version is that for each f. > 0 , there is a set 
S,(x) of integers n x of cardinality o,(x) such that if n x, n ¢ S,(x), 
then <II(n) is divisible by every prime p (logx)l-f . From the above 
mentioned theorem, this is true for all f. < 1 - c' . The weaker version is 
that 

L: lip = 0(1) 
p<logn 
p 14>(n) 

on a set of n of asymptotic density 1. Perhaps this is tractable. Note that 
from the above comments, we have 

L lip -+ 0 as n -+ 00. 

p>logn 
pl4>(n) 

By using sieve methods, we can prove Conjecture 2 for f. > 2/3 . We do 
not give the proof here. 
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The sum of the divisors function 0'( n) resembles in many ways Euler's 
function r,o( n) . Yet it seems very difficult to prove anything non-trivial 
about the sequence of k-fold iterates O'k(n) . For example, consider the 
following statements: 

(i) for every n > 1, O'k+1(n)/O'k(n) ---+ 1 as k ---+ 00; 

(ii) for every n > 1, O'k+l(n)/O'k(n) ---+ 00 as k ---+ 00; 

(iii) for every n > 1, O'k(n)l/k ---+ 00 as k ---+ 00; 

(iv) for every n > 1, there is some k with n 100k(n) ; 

(v) for every n, m> 1, there is some k with m 100k(n) ; 

(vi) for every n, m> 1 , there are some k, f, with O'k(m) = O't(n). 

We can neither prove nor disprove any of these statements. 
Let s(n) = O'(n) - n and let sk(n) be the k-fold iterate of sat n. In [8], 

the first author stated the following: For each ( > 0 and k , the set of n 
with 

Is(n) Sj+1(n) I 1" -12k -- - < ( lor J - , " .. , 
n sj(n) 

has asymptotic density 1 . This result is "half proved" in [8]. Namely, it is 
shown that the set of n with 

Sj+l(n) > s(n) _ ( for j = 1, 2, ... , k 
sj(n) n 

has asymptotic density 1 . The other half of the statement is claimed, but 
no argument is given. The first author now wishes to retract this claim and 
state the following as an open problem. 

Conjecture 3. For each (> 0 and k, the set ofn with 

Sj+l(n) s(n) 
( ) < -- + (: for j = 1, ,'" , k 

Sj n n 

has asymptotic density 1 . 

In section 5 we give a proof of Conjecture 3 in the case k = 1 . We 
also show that the full Conjecture 3 would be implied by the following 
conjecture. 

Conjecture 4. If A is a set of natural numbers of positive upper density, 
then s(A) = {s( n) : n E A} also has positive upper density. 

Note that it is possible for s(A) to have positive density when A has 
density O. For example, if p i- q are primes, then s(pq) = p + q + 1. 
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While the set of integers of the form pq has asymptotic density 0 , the set 
of integers of the form p + q + 1 with p, q distinct primes has asymptotic 
density 1/2 . This follows from work on the "exceptional set" in Goldbach's 
conjecture. In fact, a more complicated version of this idea gives that the 
set of Sk(pq) has lower asymptotic density at least 1/2 for any fixed k. We 
show this in section 5. 

Suppose for every K there is a number CK such that for any m there are 
at most CK numbers n Km with s(n) = m . We are not sure whether 
we believe this hypothesis and in fact it may be possible to disprove it. We 
note though that it implies Conjecture 4. 

In some sense, the paper [8] was motivated by a problem of H. W. Lenstra, 
Jr. [12] to show that for each k , there is an n with 

(1.2) 

Let a be the asymptotic density of the set of n with n < s(n) Then 
a > 0 and the correct half of [8] shows that for each k, (1.2) holds for a 
set of n of asymptotic density. That is, if the first inequality in (1.2) holds, 
then almost certainly all of the inequalities in (1.2) hold. Thus [8] provides 
a very strong solution to Lenstra's problem. The third author wishes to 
acknowledge a conversation with Lenstra in which the difficulty in the proof 
of the other half of [8] was discovered. 

In [9], the first and third authors prove a theorem on the normal number 
of prime factors of tp(n) . Abdelhakim Smati has pointed out to us an 
error in the proof of Lemma 2.2 in this paper and another minor error. We 
correct these errors below in the last section. 

Throughout the paper the letters p, q, r will always denote primes. 

§2. The average and normal order of F( n) 

Most of the results in this section are conditional on certain suitably 
strong versions of the Elliott-Halberstam conjecture. Before we state our 
results we define a few terms. 

Definition. We say a positive, continuous function f(X) defined on (1,00) 
is acceptable if 

(i) f(X) log x is eventually increasing and -+ 00 as x -+ 00; 

(ii) for some 8 > 0, f(X)(1og log x)l+6 is eventually decreasing. 

Some examples of acceptable functions are 

f(X) = (loglog3x)-2, 

f(X) = (logX)-1/2, 

f(X) = exp ((loglog3x)1/2)/logx. 
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Consider the two statements: 

L \7r{X;p, 1) - \ < f{X)7r{X), 
p:5;x 1-.( .. ) 

" \ 7r{x) \ 7r{x; m, 1) - <p{m) < f{X)7r{X). 
m<x1-.( .. ) 

O(m):5;2 

Here the function O( m) counts the total number of prime factors of m with 
multiplicity, so that the statement Bf implies the statement Af. 

We now state the principal results of this section. Please note that if f{ x) 
is an acceptable function, then f{X) log log X = 0(1) . 

Theorem 2.1. If Af holds for some acceptable function f{X) , then there 
is some positive constant 0 such that 

1 
- L:F{n) = ologx + O{f{X) log X log log x). (2.1) x . 

n:5;x 

Theorem 2.2. If Bf holds for some acceptable function f{X) and if 0 is 
the constant of Theorem 2.1, then 

L (F{n) - 0 log n)2 < f{X) log2 x log log x. 
n:5x 

In particular, F{n) has normal order 0 log n. 

Corollary 2.3. If f{X) is an acceptable function of the form (log X)-1+ 0 (1) 

and if Bf holds, then for each 6 > 0 , the set of n with 

IF{n) -olognl < (logn)1/2+6 

has asymptotic density 1. 

The implied constants in Theorems 2.1, 2.2 depend, respectively, on the 
implied constants in Afl B f and on which specific function f{X) is used. 
Thus if one had Af with an explicit constant for some explicit f{ x) , say 
f{X) = {loglog3x)-2 ,then the constant 0 would be effectively computable. 

We begin the proof of Theorem 2.1 with an unconditional result. 
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Lemma 2.4. For any function c(x) with x1/ 2 :5 x1-f(z) :5 (1 - c5)x for x 
large and c5 > 0 some constant, we have 

L 17r(X;P,I)-
p P 

Proof: From the definition of F we have 

Thus 

where 

LF(p)=I+ L F(p)=I+ L F(p-l) 

= 1 + L L F(q) = 1 + L F(q)1r(xjqo, 1). 
qUlp_l 

Ll = 1+ L F(p)7r(x;pO,I), 

L 2 = L 

L3 = L F(p) (1I'(X;P,1)-

We have (using F(p) logp) 

Ll 1 + L (logp) (7r(X;PO,I) -
pU 

+ L + L (log p)7r(Xj pO, 1) 

X x L xlogp x 
log2 X log x po log X 

pO >Zl/3 

(2.4) 

where we used the Bombieri-Vinogradov theorem for the first sum over 
po :5 x1/ 3 . In addition, we have 

L2 log x I: !7r(X jP, 1) - + 10: x . (2.5) 
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For :L3' we have 

L3 <t:: log z L 'II"(z;p, 1) + 'II"(z) 

<t:: log z L 'II"(z;p, 1) + 'II"(z)((z)logz. (2.6) 

We estimate the sum on the right of (2.6) using Brun's method as follows: 

L 'II"(z;p, 1) = L 1 

q::l (mod p) 

5L L 1 <t:: L _m _ _ --:z,..:-/_m_ 
<p(m) log2(z/m) 

pm+l is prime 

z L 1 ((z)z <t:: -- -- <t:: --
log2 Z ) <p( m) log X • 

(2.7) 

Putting this estimate in (2.6) and assembling (2.3)-(2.6), we obtain the 
lemma. 

Corollary 2.5. If ((z) is some function that satisfies the hypothesis of 
Lemma 2.4 and if Af holds, then 

'll"tz) LF(p) - L F(p) <t:: ((x)logz. 
p 

Proof of Theorem 2.1: We unconditionally have 

;. I: F(n) = I: F(p) + 0(1). 
p 

(2.8) 

Indeed, using F(p) <t:: logp , we have 

L: F(n) = L: I: F(p) = L: F(p) [ xa ] 

p 

= L + 0(1) = L F(p) + 0(1). 
P P 

Corollary 2.5 gives a (conditional) connection between F(p)/p and 
F(p). There is another (unconditional) connection which comes from 

partial summation. Let 

1 
R(x) := - L: F(p). 

x 
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Then 
L: F(p) = R(z) + 1:t! dt. 

P 2 
(2.9) 

Assume now that f( z) is an acceptable function and that Af holds. Then 
from Corollary 2.5 and (2.9) we have 

1:t!1 
R(z) logz = R(z) + -R(t) dt + O(f(Z) logz), 

2 t 

so that 
1 1:t! 1 R(z) = -I - -R(t) dt + O(f(Z)), 

ogz 2 t 
(2.10) 

using R( z) <t:: 1. 
Let 

1 1:t! 1 V(x) := -I - -R(t) dt. 
ogx 2 t 

Since R(z) is continuous but for a discrete set of jump discontinuities it 
follows that V(z) is continuous, differentiable where R{z) is continuous 
and satisfies 

V{x) = 1x V'{t) dt. (2.11) 

But at points where R(z) is continuous, we have 

V'{x) = R(x) _ 1 r !R{t)dt 
x log z Z log2 Z 12 t 

1 f(Z) 
- -- (R{x) - V{z)) <t:: -- (2.12) 
- x log x z log z ' 

by (2.10). 
Note that by the definition of acceptable function, we have 

r f(t) dt < 00. 
12 t logt 

Thus by (2.11) and (2.12), we have that 

0':= rIO V'(t) dt = lim V(x) J2 x_oo 

exists and is positive. 
We define now 

((x):= 100 dt 
x tlogt 

(2.13) 



ITERATES OF ARITHMETIC FUNCTIONS 175 

and note that from the definition of acceptable function we have 

ex = t< t=ex () 100 e(x) log x d 100 e(t)logt d -() 
z: t log2 t - z: t log2 t 

= 100 e(t)(loglogt)l+6 dt < 100 e(x)(loglogx)1+6 dt 
z: tlog t(log log t)1+6 - z: t log t(log log t)1+6 

1 
= be(x) log log x (2.14) 

for some 0> 0 and all sufficiently large x. From (2.10)-(2.14), we have 

R(x) = a + O(l(x)). 

Putting this estimate and (2.14) into (2.9) gives 

L F(p) = a log x+O(l(x) log x) = a log x+O(e(x) log x log log x). (2.15) 
p 

Thus (2.1) follows from (2.8) and (2.15). 

We now turn our attention to the proof of Theorem 2.2. We shall prove 
this result by Thran's method (see Elliott [3], vol. II, p.112). In particular, 
let 

1 
E(x) := -; L F(n). 

Thus (2.2) follows directly from (2.1) and the assertion 

.!. L (F(n) - E(x))2 e(x)log2 xloglogx. (2.16) 
x 

n:Sx 

But 

Thus (2.16) follows from (2.1) and the assertion 

1 -; L F(n)2 = a 2log2 x + O(e(x)log2 xloglogx). (2.17) 
n:Sz: 
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We have thus reduced Theorem 2.2 to proving (2.17) (under the hypothesis 
of Theorem 2.2) . 

We now turn to the sum in (2.17) . We have 

where 

and 

1 

= L F(p)2 [:.] + 2 L F(p)F(q) [.:..] + Ll + L 2 , (2.18) 
p pq 

p<q 

L2 = 2 L F(p)F(q) [p:qb] 

p<q 

x L L x L x log x. 
p l q P 

Further note that removing the brackets on the right of (2.18) introduces 
an error of at most O( x log x) . Thus 

We thus will have (2.17) and Theorem 2.2 from (2.14), (2.19) and the 
following result. 
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Proposition 2.6. Under the hypothesis of Theorem 2.2 we have 

F(p)2 1 L -- = 20:210g2 ;r: + O( f(;r: ) log2 ;r: log log ;r:), (2.20) 
p 

2 L F(p)F(q) = + O(l(;r:) log2;r:) (2.21) 
pq 2 

p<q 

where l(;r:) is defined in (2.13). 

Proof: We begin with the proof of (2.21) which is easier and actually used 
in the proof of (2.20). First note that from f(;r:) l(;r:) for large ;r: (see 
(2.14)), we have 

d l(;r:) - f(;r:) 
- (l(;r: ) log ;r:) = 0 d;r: ;r: 

for large;r: , so that l(;r:) log;r: is eventually increasing. Thus from (2.15) we 
have 

L F(p)F(q) = L F(q) L F(p) 
pq q p 

p<q 

= ,E. - ologp+O (, log m) 
+ 0 (l(p) logp») 

= 0: log;r: L F(p) - 20: L F(p) logp 
p p 

+ 0 (l(;r:)IOg;r: L 

l Vx 1 F() = 20: t L ---.E.. dt + 0 (l(;r: ) log2 ;r:) . 
2 P 

(2.22) 

By (2.15), the integral is 

20 J,'1ii 0 I;gt dt + 0 (1,';;; ,(t) ;og t dt) 

( [Vx dt) = 0:210g2 JX+O l(;r:)log;r: 12 T 

1 = 40:210g2;r:+ 0 (l(;r:)log2;r:) , 
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so (2.22) gives (2.21). 
We now turn to the proof of (2.20). By partial summation, we have 

We now expand F(p)2. We have 

LF(p)2 = 1 + L F(p-l)2 = 1 + L ( L F(q))2 
q-I p-1 

=1+ L F(p)F(q)7I"(z;[pG,qb],I) 

= 1 + L F(p)271"(z;p, 1) + 2 L F(p)F(q)7I"(z;pq, 1) 

+ L F(p)F(q)7I"(z; [pG,qb] ,1). (2.24) 

We have 

using hypothesis A( and (2.7). Next, we have using hypothesis B(, 

L F(p)F(q)7I"(z;pq, 1) 

p<q 
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= 7r(X) L F(p)F(q) + 0 (IOg2 X L 17r(x; ,pq, 1) _ 7r(x) I) 
cp(pq) cp(pq) 

p<q 

+ 0 (lOg X L (logp)1I"(X;pq, 1)) 
p<q 

+0 (.(z) .. .. 
x '" F(p)F(q) 0 ( x '" logPIogq) O( ( ) I ) = -I - L..J + -I - L..J 2 + f. X X og X 

ogx pq ogx p q 
p<q p<q 

+0 (lOg X 1) 
qpm+l prime 

+ 0 (_X_ '" logp '" IOgq) 
logx L..J p L..J q 

.,1-«..,) <q< f. 
p -p 

= _X_ L F(p)F(q) + o (f.(X)X log X) +0 (_X_ L L IOgp) 
log X pq log X m<x«"') p< r.L PI;? ( m) 

p<q -Vm 

= _X_ '" F(p)F(q) + 0 (f.(x)x log x). (2.26) 
logx L..J< pq 

pq x 
p<q 

For the last term in (2.24) we have the estimate 

L logp L L logq 
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using the Brun-Titchmarsh inequality. Putting this estimate, (2.25) and 
(2.26) into (2.24) we get 

logx L:F(p)2 = L: F(p)2 +2 L: F(p)F(q) +0 (((x)10g2 x). (2.27) 
X pS:I: pS:I: P pqS:I: pq 

p<q 

Now using this estimate with (2.14), (2.21) and (2.23), we get 

10: x L: F(p)2 = x + 1:1: L:F(p? dt + 0(l(x)10g2 x), 
pS:I: 2 PSt 

so that if 

then we have 

1 1 1:1: 1 R2(x) = -2a2logx + -1 - -R2(t) dt + O(l(x) log x). (2.28) 
ogx 2 t 

Let 
1 1:1: 1 V2(X):= -1 - -R2(t)dt. 

ogx 2 t 
As in the proof of Theorem 2.1, we have 

V2(x) = 1:1: V;(t) dt 

and 
V;(x) = -1_1_(R2(X) - V2(X)) = a2

2 + 0 (l(X)) . 
x ogx x x 

Thus from (2.29), we have 

V2(x) = + 0 (1 + 1:1: dt) . 

But for large x 

r l(t) dt=l(x)logx- r c(t)logtdt 
12 t 12 

1 :1: ((t) logt 
= l( x ) log x + 1 dt 

2 t ogt 

1 :1: dt 
< l(x) log x + ((x) log x -1-
- 2 t ogt 
= f(x) log x + (x) log x(log log x -loglog2) 
<: ((x) log x log log x 

(2.29) 
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by (2.14), so that 

Thus from (2.28), we get 

Finally, using this and (2.21) in (2.27) gives (2.20). 
REMARKS: With a little more care, the right side of (2.2) can be re-

placed with 

f(x)log2 x+logx r f(t)dt. 
J2 t 

For some choices of acceptable functions f( x), this expression is 
O(f(x)log2 x), which is smaller than the right side of (2.2) by a log log x 
factor. For example, we would have this for f( x) = (log x) - 6 for some fixed 
6,0 < 6 < 1 . 

For each prime q , define a completely additive function Fq(n) by induc-
tively defining its values on the primes as follows: 

{ 
0, 

Fq(p) = 1, 

Fq(p - 1), 

if p < q 

if p = q 

if p > q. 

Thus F2(n) = F(n). The functions Fq(n) have the following connection 
with the iterated phi-function: 

where we interpret <po(n) = n. We have already seen this for q = 2 in the 
Introduction. 

Theorems 2.1 and 2.2 hold for the functions Fq for each q with corre-
sponding constants Q q (with Q2 = Q ) , except that we are not sure that 
Q q > 0 for q > 2 . This, in fact, can be proved assuming hypothesis Af 
holds for f( x) = (log X )c-I for some c with ° < C < CIO where ClO is the 
constant of Theorem 4.5 below. Indeed, if <pj (n) is divisible by every prime 
up to (log n )ClO and if n is large, then <PHI (n) is divisible by qk where 

k > -..:..(l-:og;:...n-"):-c1_O _ 

qclO log log n 
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Thus Theorem 4.5 implies Fq( n) (log n )ClO / log log n on a set of asymp-
totic density 1. However, this is incompatible with (2.1) if O'q = 0, t(x) = 
(logx)c-l . 

Let vp(n) denote the exponent on p in the prime factorization of n. Note 
that for any natural number m we have 

Let k = k(n) . Then 

j; 

if vp(m) > 0 

if vp(m) = O. 

0= vp(<pj;(n)) = vp(n) + L (vp(<pi(n)) - Vp(<Pi-l (n))) 
i=l 

= vp (n) - L 1 + L L vp( q - 1) 
i>O q I..,.(n) 

tJ p ( ..,;(n ))>0 

= vp(n) - Fp(n) + L vp(q - 1)Fq(n); 
q 

that is, for every prime p and every natural number n , we have 

Fp(n) = vp(n) + L vp(q - 1)Fq(n), 
q 

where the sum is over all primes q . 

(2.30) 

We can generate another pretty identity involving the functions Fp via 
the elementary relation 

We have 

logm -log<p(m) = L log p l' 
plm 

logn = L(log<Pi(n) -log<Pi+l(n)) = L L log 1 
p 

= L Fp(n) log p l' (2.31) 
p 

Using (2.30) with p = 2 to eliminate F2(n) in (2.31), we have 

7 
log n = v2(n) log 2 + F3(n) log 3 + F5(n) log 5 + F7(n) log 3' + ... (2.32) 
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where the general term on the right is Fp(n) log (p!lh for p 3 and where 
(p-1 h is the largest odd divisor of p-I. We can now use (2.30) to eliminate 
F3(n) in (2.32) and continuing, if we eliminate all Fp(n) for p:$ q , we obtain 
the identity (valid for all nand q): 

logn = L vp(n) logp+ L Fp(n) log ( ! 1) , (2.33) 
p>q p q 

where (p-I)q denotes the largest divisor of p-I not divisible by any prime 
up to and including q. 

Since for every p > 2 we have (p-I)q = 1 for some q < p , a corollary of 
(2.33) is the theorem 

Fp(n) :$logn/logp (2.34) 

for all n and all p > 2 . From (2.31), this inequality holds for p = 2 as 
well. Note that if n = pI: , then Fp(n) = k = logn/logp, so (2.34) is best 
possible. 

Suppose now that Al holds for some acceptable function c(z) . Then 
each of the numbers O:p exists and an immediate corollary of (2.34) is that 

O:p :S 1/logp (2.35) 

for each p. In particular, limp_oo O:p = o. Further, (2.30) implies that 

O:p L vp(q - 1)O:q 

for any prime po. Letting Po - 00, we obtain 

(2.36) 

for every p. The case p = 2 shows that L O:p converges. Similarly, using 
(2.31) and (2.33) we get 

(2.37) 

for every q . Thus if infinitely many p have O:p > 0 , we have strict inequality 
in (2.35) for every p . 

Assume now that 0 < C < ClO and that At holds for c( z) = (log Z )c-l. 
We've seen that this then implies each O:p > 0 . Thus (2.36) and Dirichlet's 
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theorem on primes in an arithmetic progression imply we have Ctp > Ctq for 
all primes p, q with q == 1 (mod p). We conjecture that we have Ctp > Ct q 

whenever q > p. 
We can prove that we have equality in the first statement in (2.37) as 

follows. By (2.34), we have 

loI n I: Fp(n) log 1 I: log(pto(p - 1)) --+ 0 as Po --+ 00. (2.38) 
g P>Po p P>Po gp 

But for any Po , we have by (2.31) 

1",1", p 1",1", p 
1 = [x] L..J 10 n L..J Fp(n) log ---=1 + [x] L..J 10 n L..J Fp(n) 10g---=1 

g p g P>Po p 

'" p 1",1", p = L..J Ctp log ---=1 + 0(1) + [x] L..J 10 n L..J Fp(n) 10g---=1 
p g P>Po p 

as x --+ 00. But from (2.38) we can make the last expression as small as we 
please uniformly for every x by taking Po large enough. Thus 

1 = '" Ctp log -p-. L..J p-l 
p 

We conjecture we also have equality in (2.36) and in the second statement 
of (2.37). 

§3. Results on the sum of the reciprocals of primes 

From a theorem of Landau (for example, see Davenport [2], p. 94) there 
is a positive constant Co with the following property. Let [(co) denote the 
set of natural numbers n for which there is a real primitive character X mod 
n for which L(s,X) has a real root f3 1- co/logn. Then 1 ¢ [(co) and 
for any x there is at most one member n of [(co) between x and x 2 • 

Lemma 3.1. There are positive absolute constants Cl 1, C2 > 1 such 
that if n > 1 is a natural number with n not divisible by any member of 
[(co) , then 

I:' 
p=l (mod n) 

1 Cl 
- -( ) (log log x -loglogn) 
p ipn 

for all x n C2 , where L:' signifies that the sum is over primes not in [(co). 

Proof: This result follows from the proof of Linnik's theorem given in 
Section 6 of Bombieri [1]. In particular, from this proof, if C2 is sufficiently 
large, then 

E' 
p=l (mod n) 

t 
logp> 2rp(n) 
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for any t nC2/2. Then if :c nC2 , 

I:' 1 1:& 1 -> --
P - n t 2 10gt 

pE:l (mod n) 

logpdt 
p9 

p=1 (mod n) 

>-- --1 1:& dt 
- 2<p( n) nC2/2 t log t 

1 
= 2<p(n) (Ioglog:c _loglog(nC2 /2)) 

C1 
<p( n ) (log log:c - log log n) 

for C1 (log 2)/(2 log C2). 

Lemma 3.2. Suppose S is a set of primes. For any :c , let 

81 = I: I:' 
pES 

1 , 
q 

q=1 (mod p) 

If q :c is prime, let aq denote the number of prime factors of q - 1 that 
are in S. If 81 > 0 , then 

Proof: This is just the Cauchy-Schwarz inequality. In fact, 

81 = E' aq = E' . < lE'!) 1/2 (E' 1/2 

q - q q 
,>0 

= lE'!) II' (2S, + S,)'/', 
q 

,>0 

since = 2e2') + ag• 

Lemma 3.3. Suppose y 3 and S is a set of primes such that if pES 
then p y and p rt C(co). There is an absolute positive constant C3 such 
that if :c yC2 , then 

E'I> . { (Ioglog:c-Ioglogy)2 c1 (1 I I I )E I} - mm - og og:c - og og y -
< q - 16c3 loglog:c ' 4 p 

g_z pES 
G,>O 
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where aq is defined in Lemma. 3.2. 

Proof: The lemma is clearly true if 2 E S or if S = 0 , so assume 2 ¢ S 
and S ;:f 0. Using the notation of Lemma 3.2, we have 

from Lemma 3.1. Also, using partial summation and the Brun-Titchmarsh 
inequality we have for some absolute constant C3 1, 

L 
q:l (mod n) 

1 C3 
- -( ) log log x q tp n 

for any natural number n and any x 3. Thus 

since 2 rt. S. Thus from Lemma 3.2, we have 

and our conclusion follows. 
If k, n are natural numbers, let 

SHx,n) = 

where again the dash means that p £(co). 

(3.1) 

Theorem 3.4. There are absolute constants 0 < C4, C5, C6 1 such that 
for any A and x 2: xo(A) we have 

I' 1 C5 log log x { ( )k} Sk(x, n) 2: mm c4log log x, tp(n) k 
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[or all n (log x)A and k c6log log x. 

Proof: Fix an arbitrary number A and assume n (log x)A . If y 
exp ((log x )1/3), then by partial summation and the Siegel-Walfisz theorem, 
provided x xo(A), we have 

1 
1 dt -( -) log log x. 7<p n 

By letting y = x in (3.2) we have the theorem for k = 1 . 

(3.2) 

Suppose now k = 2. Let S be the set of primes p exp((logx)1/3) for 
which p == 1 (mod n) and p ¢ £(co). Then in the notation of Lemma 3.2, 
we have 

From Lemma 3.3 and (3.2) with y = exp((logx)1/3) we have 

42:1(n)(IOglogx)2}, 

which gives the theorem for k = 2 . 
N ow let k = 3 . Let 

S: = S: (exP((log x )i/3), n) for i = 1, 2, 3. 

Then from Lemma 3.3 we have 

min { log log x, (log log x } , 

min { 1 :L3 log log x, (log log x } 

. c1 c1 2 c1 2 I { 
2 3 2 } 

mm 144c3loglogx, 1152c3 (log log x) '144(loglogx) Sl . 

Since 7,An) log log x by (3.2), we have our theorem for k = 3. 
Suppose now k 4 . Let 
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If C6 is sufficiently small, then k C6 log log x implies that Yi yi: 1 for 
j = 1, ... , k - 3. Note that 

1 
10giogYi -loglogYi_l = 3(k _ 3) log log x. 

Thus from Lemma 3.3 we have for j = 1, '" , k - 3 

(3.3) 

The min is the first term if and only if 

(3.4) 

We shall choose C6 so small that we also have C6 cl/12. Then k - 3 
(cl/12) log log x, so that 

log log X Cl > . 
96c3{k - 3)2 - 8C3(k - 3) 

(3.5) 

Thus if 0 < j < k - 3 and the min in (3.3) is the first term, then (3.5) 
implies that 

Sj+l(Yj,n) 3) 

and so (3.4) implies the same is true when j is replaced with j + 1 ; i.e., 
the min in (3.3) is again the first term. Thus by iterating (3.3), we have 

I • { log log X 
SI:_2(YI:-3, n) mm 96c3(k _ 3)2' 

clog ogx I ( I I ) 1:-3 } 
12(k _ 3) Sl(YO, n) . (3.6) 

Note that from (3.2) we have 

) loglogx. 
7tp n 

(3.7) 

Note also that YI:-3 = exp((logx)2/3). Thus from Lemma 3.3, we have 

:= (exp{(logx)5/6), n) 
min { 4:Jc3 log log x, (log log n) } , 
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SHx, n) min {5;L3 log log x, 

Thus from (3.6) and (3.7) 

, . { c? cWog log x )2 (C110g log x) 1:-2 log log x} 
S1:-1 mill 480C3 log log x, 2304c3(k _ 3)2' 12(k - 3) 14<p(n) ' 

so that 

{ 
c2 d 

min (loglogx)2, 

( C110g log x) 1:-1 log log x} 
12(k - 3) 28<p(n) 

Thus our theorem holds with 

if x xo. 

Theorem 3.5. If C3 is the constant in (3.1), we have 

ci(log log x? 
55296c3(k - 3)2' 

for every odd prime p, for every k 0 and for all x with log log x 2/C3. 
(We define <po(n) = n.) 

Proof: The theorem holds for k = 0 since <po(n) = n. Suppose k 0 
and the theorem holds for k. If pi <P1:+ 1 (n) then either p21 <P1:( n) or there 
is some prime q I <p1:(n) with q == 1 (mod p). Thus 

Ll 
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by the induction hypothesis, the fact that p2! lPk(n) implies p!lPk(n) and 
the observation that if n :5 x and q! lPk(n), then q :5 x. Using (3.1) to 
estimate the remaining sum we have 

:5 log x)k (1 + log x) 

:5 =(2c3Iog log x )Hl. 
P 

REMARK: If we let Sk(X,p) denote the sum of l/q for primes q :5 x with 
p! lPk(q), then by essentially the same proof we have 

for the same set of p, k, x as in Theorem 3.5. Although this result will not 
be of use to us it is interesting to compare it with Theorem 3.4 in the case 
n=p. 

§4. More on the iterated phi-function 

Using the constants C3, C5 of the preceding section, let 

Let 

Thus if n:5 x, Ik(n,x) measures in some sense how far lPk(n)/lPH1(n) is 
from 

II (1 - l/p)-l. 
p:5 (log log x)k 

Theorem 4.1. There is an absolute constant C7 such that 

1 - L: Ik( n, x) :5 c7(log k )/(log log log x - log k) 
x 

n:5x 
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for all x 2:: Xo, 1:::; k < loglogx. 

Proof: We have It.l:(x) :::; (loglogx).l: :::; f3.l:(x) for all k 2:: 1, x 2:: 3. Thus 

L: /.l:(n, x) = L: L: 1 + L: L: 1 
p p>(Iog\ogz)k p 

pl'l'k(n) pl'l'k(n) 

< L: ! L: 1+ L: !L:l+ L: ! L: 1 
- P:5Qk(X) P Qk(Z)<P:5.Bk(Z) p P>fJk(Z) p n<z 

pl'l'k(n) pl'l'-;;(n) 

= 81 + 82 + 83 , say. (4.1) 

If pI , then n is not divisible by any prime q with . Thus 
by Brun's method (see Halberstam-Richert [11] ) we have 

1 ( 1) L: 1 <t:: x IT (1- -) <t:: xexp - L: -
n<z q<x q q<z q 

pI'l'-;;(n) pi ik(q) pi ik(q) 

:::; x exp ( - 8H x, p)) 

uniformly for all x, p, k, where 8k(x,p) is defined in section 3. Let 

Thus by Theorem 3.4, there is an absolute constant Cs such that 

for all x 2:: Xo, p:::; (logx)2, k:::; C6 log log x. 

if p > ltk ( x) + 1 

if p :::; ltk ( x ) + 1 
(4.2) 

The theorem holds trivially if k log log x, so assume k j log log x :::; 
mingc5,c6}' Since for any k, It.l:(x):::; (logx)cs/e, (4.2) implies 

1 1 :::; csx(log x)-C4 L: -+ CsX L: _e- Qk (z)/(p-1) 

p P 

<t:: x j log It.l: (x) <t:: x j(log log log x - log k). (4.3) 
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Since we are assuming k !c510g log x , we have 

1 
82 x L - = X (log log PA:(x) -loglogaA:(x) + O(1/logaA:(x))) 

G'k(x)<p9k(X) p 

< x(logk)/(logloglogx -logk) (4.4) 

uniformly in k. 
For 83 we use Theorem 3.5 to estimate the inner sum. We have 

Assembling this estimate, (4.1), (4.3) and (4.4) we have the theorem. 

Theorem 4.2. Let t(x) > 0 tend to 0 arbitrarily slowly as x --+ 00. If 
k (loglogx)f(x) , then the normal order of <pA:(n)/<PHl(n) for n x is 
ke"Y log log log x . 

Proof: Let 6 > 0 be arbitrary. Let x be large and let k (log log X )f(X). 
From Theorem 4.1, the average value of fA:(n, x) for n x is O(t(x)). Thus 
if x xo(6) ,fA:(n,x) < 6 for at least (1- 6)x values of n x . But 

so that 

( <pA:(n) II ( 1)) log <PAl l(n) 1- p < fA:(n, x). 
+ 

Thus, for at least (1 - 6)x values of n x 

<pA:(n) 
( ) = (1 + O(6))ke"Y log log log x. 

<pA:+! n 
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Theorem 4.3. Let (z) > 0 tend to 0 arbitrarily slowly as z -+ 00. Then 
if k ( z) log log log z / log log log log z , the normal order of !.p( n) /!.pH 1 (n) 
for n z is k !el:'Y (log log log z)1: . 

Proof: From the proof of Theorem 4.2, the number of n :5 z for which 

IIog ( (je'YlogIOglogz)-1)I :5 I :Ogt 
!.pj+! n og og og z 

fails is 0 uniformly for any j k. Summing for j = 1, ... , k 
we have that 

but for at most O«((z)z) integers n :5 z. Since (z) -+ 0, we have our 
theorem. 

Theorem 4.4. There is an absolute constant C9 > 0 such that if 1 :5 k :5 
C9 log log z , then the number of n z for which 

> k(logloglogz -logk) 
!.pH1 n 

fails is O(zk- 1 (log log log z -logkt1). In particular 

max !.pl:(n) > loglogn 
I: !.pl:+!(n) 

for a set of n of asymptotic density 1. 

Proof: As in (4.3), if C9 > 0 is small enough, then 

1 1 L L -= L - L 1 <z/logO'I:(z) 
p p 

pi cp.(n) pI cp.(n) 

< d-1(logloglogz -logk)-1 

(4.5) 

uniformly for all k :5 c9log log z. Thus but for at most O( d -1 (log log log z 
-log k )-1) exceptional values of n :5 z, we have 
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For those values of n we have 

3 4e"Y logak(x)-l 

> k(log log log x - log k) 

provided x is sufficiently large and C9 :::; This proves the theorem. 

Theorem 4.5. There is a positive absolute constant CIO such that the set 
of natural numbers n, for which there is some k with Y'k(n) divisible by 
every prime up to (log n )ClO, has asymptotic density 1 . 

Proof: There is a positive absolute constant Cll such that if k = [C11 
log log x] , then ak(x) > (logx)CI1. Then by (4.2) we have 

L 1:::; C8X(lOg x) -C4 
n<r 

pI ",-;'(n) 

for all x Xo, primes p :::; (logx)CI1/2, k = (cllioglogx]. Let CIO 
min {c4/2, cll/2}. Then 

L L 1 < c8x(logX)-C4/2. 

pI "'k(n) 

Thus but for at most c8x(logx)-C4/2 exceptional integers n :::; x we have 
plY'k(n) for every prime p:::; (logx)Clo if k = [c11loglogx] and x Xo. 
This proves the theorem. 

In contrast to Theorem 4.5 we give the following result. The proof is 
not an application of the theorems in section 3, but rather follows from the 
easy identity (2.30). Let v(m) denote the number of distinct prime factors 
ofm. 

Theorem 4.6. Let = n Y'k(n). Then for all n, :::; 
r(log n) / log 21- In particular, for all n there is some prime p «: 
log n log log n with p J 
Proof: For any n> 1 we have, using (2.30) with p = 2 and (1.1), 

n odd 
L 1:::; l+LFq(n):::; { 1+( F) (n), 
q>2 q>2 F n , n even 

q 14>(n) 

= k(n):::; r(logn)/log21. 
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§5. Aliquot sequences 

Let s(n) = O'(n) - n , where 0' is the sum of the divisors function. Let 
sl(n) = s(n) , s2(n) = s(sl(n» , etc. What is now known as the Catalan-
Dickson conjecture is that for any n , the "aliquot sequence" n, sl(n), 
s2(n), ... eventually terminates at 0 or is eventually periodic. The least 
n for which this conjecture is in doubt is 276. Guy and Selfridge [10] 
instead conjecture that for infinitely many n the aliquot sequence beginning 
with n tends to 00. The function s( n) has been studied since antiquity 
when numbers were classified as perfect, abundant or deficient depending 
on whether s(n) = n , s(n) > n or s(n) < n , respectively. 

As discussed in the Introduction, the first author proved in [8] that for 
each £ > 0 and k , the set of n for which 

sj+l(n) > s(n) _ £ for j = 1, ... , k 
sj(n) n 

(5.1) 

has asymptotic density 1 . Further, he claimed that similar methods would 
show that 

Sj+l(n) < s(n) + £ for j = 1, ... , k 
sj(n) n 

for a set of n of asymptotic density 1. This claim of a proof is now re-
tracted but we still remain convinced of the truth of this statement; it is 
our Conjecture 3 in section 1. We now give a proof of the case k = 1 . 

Theorem 5.1. For each £ > 0 , the set of n with 

S2(n) s(n) --<-+£ 
s(n) n 

(5.2) 

has asymptotic density 1 . 

Proof: Let 1 > 0 > 0 be arbitrary. We shall show that for all large x, 
the number of n :5 x for which (5.2) fails is at most cox for some absolute 
constant c. 

Let P( n) denote the largest prime factor of n. If '7 > 0 is sufficiently 
small, then the number of n :5 x for which 

(5.3) 

fails is at most ox for all large x . This result follows from either sieve 
methods or work of Dickman and others on the distribution of integers n 
with no large prime factors. Fix such a number '7. 

Since En<,; O'(n)/n x, there is a number B so large that the number 
of n :5 x for -which 

O'(n)/n:5 B (5.4) 

njasloane
Text Box
A98007

njasloane
Text Box
A8892

njasloane
Text Box
A6530

njasloane
Text Box
A1065
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fails is at most 6x for all large x. Fix such a number B. 
If a > 0, say that an integer n is a-primitive if s(n)/n a and if din, 

d < n, then s(d)/d < a (also called a primitive (1 + a)-abundant number). 
Let a be a rational number with 0 < al < 1/2, al $ f/4B . Also let a2 

be a rational number with 0 < a2 < al'1/24. Since aI, a2 are rational, it 
follows from the proof in [6] for the case a = 1, that 

(1) E l/a < 00, 
(2) E l/a < 00, 

where for i = 1, 2, E(i) denotes a sum over ai-primitive numbers. Since 
a/cp(a) is bounded if a is ai-primitive, it follows that there is a number T 
so large that 

E(l\/a < 6, E(2\/cp(a) < 6'1. 

Also assume T is so large that 

1 
T> -+1, 

a2 

(5.5) 

(5.6) 

If n > 1 is an integer, factor n as nln2 and s(n) as NIN2 where every 
prime factor of n1N1 is less than T and every prime factor of n2N2 is at 
least T. It follows from the work in [8] that but for a set of n of asymptotic 
density 0 , we have 

(5.7) 

The idea of the proof is that but for a set of n of asymptotic density 0 , the 
number nl is not too large, say nl < (loglogn)1/2/TIp<TP. For these n , 
there is almost certainly a prime qlln with 

q == -1 (mod nl II pl· 
p<T 

Then but for a set of n of asymptotic density 0 , we have nl TIp<T p I u(n). 
For these n we have nlls(n) and (TIp<TP,s(n)/nl) = 1, i.e. (5.7) holds. 

The number of n $ x with n2 divisible by an aI-primitive number a is 
at most 

by (5.5). Thus but for at most 6x exceptional values of n $ x, we have 

(5.8) 
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Suppose now that (5.2) fails for n. By adding 1 to both sides, we get 

0'( s( n)) 0'( n) 
() -+(, 

s n n 

so that from (5.7) and (5.4) 

0'(N2) > 0'(N2)/N2 = O'(s(n))/s(n) 
N2 - 0'(n2)/n2 O'(n)/n 

( ( 

1+ O'(n)/n 1+ B 1+ 4a1. 

Factor N2 as N3N4 where every prime in N3 also divides nand (N4' n) = 1. 
If N3 = Il pf;, where Pi T are distinct primes and each f3i 1, then 

0'(N3) = IT Pi - pi/3; < IT 
N3 Pi - 1 Pi - 1 

(IT 1 . 1) 
since each Pi I n2 . Then from (5.6) and (5.8) we have 

Thus 
0'(N4) 0'(N2)/N2 1 + 40:1 

= 0'(N3)/N3 > 1 + 20:1 > 1 + 0:1, 

so s(n) is divisible by an 0:1 -primitive number a1 not divisible by any prime 
below T and with (a1' n) = 1 . 

We now show that any O:l-primitive number a1 which is not divisible by 
any primes below T must have an 0:2-primitive divisor a2 with a2 ai/2 . 
Indeed, let the distinct prime factors of a1 be Q1, ... , qt, where 

so it is sufficient to show 0'( ao) / ao 1 + 0:2, for this will guarantee it having 
an 0:2-primitive divisor a2. 
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Note that 
[qt/2] ,.,t/3, 

since if not, we have t < 6/,." which implies by (5.6) 

a contradiction. Thus from (5.6), 

We have seen above, but for O(c5z) integers n z, if n z does not 
satisfy (5.2), then s(n) is divisible by an al-primitive number al with 
(al, n) = 1 and al not divisible by any prime below T and further that 
(5.3) holds. Thus such an n must have s(n) divisible by an a2-primitive 
number a2 with (a2, n) = 1, with a2 not divisible by any prime below T 
and with 

a < aq / 2 < s(n)Q/2 < z2Q/3 2 _ 1 _ 

for z large. For such an n, we factor it as mp where p = P(n). From (5.3), 
m < zl-q, plm. Consider the a2-primitive number a2 just discovered 
dividing s(n). We have s(n) = p(u(m) - m) + u(m) , so that 

p(u(m) - m) == -u(m) (mod a2). (5.9) 

Since (a2,pm) = 1 we have (a2,u(m)) = 1 so that there is a certain residue 
class c( m, a2) mod a2 such that if p, m, a2 satisfy (5.9), then p == c( m, a2) 
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mod a2. Thus but for O(6x) integers, the number of n x which do not 
satisfy (5.2) is at most 

where we used the Brun-Titchmarsh theorem for the first inequality and 
(5.5) for the last. 

Theorem 5.2. Conjecture 4 implies Conjecture 3. 

Proof: Let k be a natural number. Let T = T( n) tend to infinity very 
slowly, say T(n) is the 3k-fold iterated logarithm. For j = 1, ... , k, factor 
sj(n) = mjnj where every prime factor of mj is less than T and every 
prime factor of nj is at least T. We analogously factor n = mono. In the 
same way as (5.7) is established, the set of n for which 

(5.10) 

fails has asymptotic density 0 . Indeed, this is essentially established in [8]. 
By a simple averaging argument one can show that the set of n for which 

1 1 
L.- p -1 T 
pin 

fails has asymptotic density 0 . Indeed, the average value of the sum is 
,..., (TlogT)-l. But 

log O'(no) < log (II (1 + _1 )) < _1 . 
no p - 1 L.- p - 1 

pin pin 

Thus, but for a set of n of asymptotic density 0 , we have 

O'(nj)/nj < e1/ T for j = 0, 1, ... , k, (5.11) 
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using Conjecture 4 in the form: if A has an asymptotic density 0, then 
8- 1(A) has asymptotic density O. 

By the same argument involved with (5.4), we have that the set of n for 
which 

O'(rno) I T --< og 
rno 

(5.12) 

fails has asymptotic density 0 . Then from (5.10) and (5.11), for j k we 
have 

8j+1(n) 8(n) _ O'(rno) (O'(nj ) O'(no)) 
8j (n) - --;- - --;;;- - -;;;;-

< (logT)(e 1/ T - 1) (logT)/T = 0(1), 

which gives Conjecture 3. 

REMARK. Note that (5.10), the case j = 0 of (5.11) (which does not 
require Conjecture 4) and (5.12) immediately give 

8( n) 81+1 (n) _ 0'( rno) (O'( no) 0'( nj )) 
--;- - 8j (n) - -;;;;- - --;;;-

< (logT)(e 1/T - 1) = 0(1). 

That is, (5.1) holds for all n, but for a set of asymptotic density 0, the 
principal result of [8]. 

Theorem 5.3. Let 8k (x) denote the number of odd numbers rn x not 
in the range of the function 8k. There is a positive number 60 such that 

uniformly for all natural numbers k and x > 0 . 

Proof: Let E(x, y) denote the number of odd integers n x with r(n) y, 
where r( n) is the number of representations of n in the form 1 + p+ q where 
p < q are primes. Since 

s(pq) = 1 + p + q, 

it follows that for any y 2: 0 

81(x) E(x,y). (5.13) 

We now prove that for any natural number k and any y > 0 , 

(5.14) 
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Let Sj denote the set of odd numbers not in the range of Sj. Suppose 
nESt+!. Consider the r( n) representations 

n = 1 + Pi + qi, i = 1, ... , r( n) 

where Pi < qi are primes. Then all of the numbers Piqi are in St, for if 
Piqi = st(m) for some m, then n = st+!(m) , contradicting nESt+!. Note 
that the integers Piqi are distinct and each Piqi < n2• Moreover if pj , qj are 
associated with n' and n =f. n', then Piqi =f. pj qj . Thus 

S/e+l(Z) = #{n z:n E Sk+l,r(n) y} + #{n z: n E S1e+l,r(n) > y} 
mESre} 

= E(z, y) + y-l Sk(z2), 

which is (5.14). 
Next we show there is some 01 > 0 , B > 0 such that 

(5.15) 

for all z 2, y z1-61 • This result follows from the proof in Montgomery 
and Vaughan [13]. To see this, let Eo(z, y) denote the number of odd 
numbers n with z/2 < n z and r(n) y. Then from the proof in [13], 
we have 

Eo(z, zl-t6Iog-3 z) <: Zl-26 1og35 z 

uniformly for 0 00 for some 00 > O. Let z = z36/2 . Then for i such that 
2i < z - , 

Let j be such that 2j z < 2i+1. Then 
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Thus letting y = zz- l log- 3 z, we have (5.15) for y zl-36o/210g3 z. Let-
ting 61 = 560/4, we have (5.15) for y zl-61. 

Suppose we know that for some specific Ie 1, there is some constant 
C(k) B with 

(5.16) 

for all z f. Then letting y = 219(C(Ie)/B)I/2z1-61 and using (5.14) and 
(5.15) we have 

where 
(5.17) 

Since we have (5.16) for Ie = 1 and C(l) = B by (5.13) and (5.15), we thus 
have it for all k where C(k) is inductively defined by (5.17). Note that 
C(Ie) < 240 B for all k. In addition, since 61 = 560/4, we have our theorem. 

§6. Corrections for an earlier paper 

In [9], the first and third authors considered the normal number of 
prime factors of <p( n) . The principal result is that this normal order is 
Hlog log n)2 and there is a Gaussian distribution with standard deviation 
7a (log log n )3/2. It has been pointed out to us by A bdelhakim Smati that 
there is an error in the proof of Lemma 2.2 of this paper. We now give a 
(hopefully) correct proof ofthis result. 

Let Oy (n) denote the number of prime factors p $; y of n counted with 
multiplicity. Lemma 2.1 of [9] gives the average order for Oy(p - 1) for p 
prime: 

"0 (p _ 1) = z log log y + 0 (_z_) 
L..J y logz logz 

(6.1) 

uniformly for 3 $; y $; z. Lemma 2.2 estimates the square mean. 

"Lemma 2.2". If 3 $; y $; z , then 

"0 (p_1)2 = z(loglogy)2 +0 (z log log y) 
L..J y log z log Z 

where the implied constant is uniform. 

Proof: Let u range over the integers with exactly 2 distinct prime factors, 
neither exceeding y. Then 

q"lIp-l 

= 83 +84 , 
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say. (In [9], the expression for 84 is wrong.) 
As in [9], we get 

83 = 0 (XIoglogy) 
log x 

using (6.1) and the Brun-Titchmarsh inequality. 
For 84 , we write 

84 = 84,1 + 84,2 

203 

where in 84,1 neither prime power in u exceeds x l / 6 and is 84,2 at least one 
prime power in u exceeds xl / 6 . We have 

using the Bombieri-Vinogradov theorem and a simple calculation. 
For 84 ,2 we have 

'" x log log Y 
84,2 L..J 0 !l(p-1) I ' ogx 

using (6.1). This, together with our estimates for 83 and 84,1 completes 
the proof. 

A. Smati also points out that the three cases on p. 350 of [9] for p21 tp(n), 
p > y (where now y = (log log X)2 ) do not exhaust all possibilities. This is 
fixed by changing (i) to (i') p21 n . The number of n x in this case is at 
most Lp>!I x/p2 = o(x/y) = o(x). 

We are grateful to A. Smati for pointing these difficulties out to us. 
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