[go: up one dir, main page]

login
A051661
Experimental values for number of circles in packing equal circles into a square for which there are no loose circles.
0
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 23, 24, 25, 27, 30, 34, 35, 36, 37, 38, 39, 42, 52, 56, 67, 68, 77, 80, 86, 87, 99, 120, 137, 143, 150, 188
OFFSET
0,2
REFERENCES
H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved problems in geometry, Springer, New York, 1991.
LINKS
L. G. Casado, I. García, P. G. Szabó, and T. Csendes, Packing Equal Circles in a Square II. - New Results for up to 100 Circles Using the TAMSASS-PECS Algorithm, Optimization Theory: Recent Developments from Mátraháza, Kluwer Academic Publishers, Dordrecht, 2001, pp. 207-224.
C. D. Maranas, C. A. Floudas and P. M. Pardalos, New results in the packing of equal circles in a square, Discrete Mathematics 142 (1995), p. 287-293.
K. J. Nurmela and Patric R. J. Östergård, Packing up to 50 equal circles in a square, Discrete Comput. Geom. 18 (1997) 1, p. 111-120.
P. G. Szabó, T. Csendes, L. G. Casado, and I. García, Packing Equal Circles in a Square I. - Problem Setting and Bounds for Optimal Solutions, Optimization Theory: Recent Developments from Mátraháza, Kluwer Academic Publishers, Dordrecht, 2001, pp. 191-206.
CROSSREFS
Complement of A051660.
Sequence in context: A364560 A097752 A014866 * A051037 A250089 A257997
KEYWORD
nonn
AUTHOR
Eckard Specht (eckard.specht(AT)physik.uni-magdeburg.de)
EXTENSIONS
I do not know how many of these values have been rigorously proved. - N. J. A. Sloane
STATUS
approved