[go: up one dir, main page]

login
A051122
a(n) = Fibonacci(n) AND Fibonacci(n+1).
4
0, 1, 0, 2, 1, 0, 8, 5, 0, 34, 17, 16, 128, 105, 96, 578, 537, 536, 16, 4165, 2624, 2, 17697, 9504, 9472, 65553, 55808, 55618, 317489, 299040, 295432, 2053, 2163968, 1377506, 263361, 8437888, 6328368, 5247017, 38010912, 33623682, 1576009, 165153832
OFFSET
0,4
LINKS
FORMULA
A000045(n+2) = a(n) + A051123(n) = A051124(n) + 2*a(n). - Antti Karttunen, Dec 03 2012
EXAMPLE
Fibonacci(6) = 8 = 1000_2, Fibonacci(7) = 13 = 1101_2, logical "AND" is 1000_2 = 8, so a(6)=8.
MATHEMATICA
Table[BitAnd[Fibonacci[n + 1], Fibonacci[n]], {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2012 *)
BitAnd@@@Partition[Fibonacci[Range[0, 50]], 2, 1] (* Harvey P. Dale, Sep 30 2017 *)
PROG
(PARI) a(n) = bitand(fibonacci(n), fibonacci(n+1)); \\ Michel Marcus, Mar 06 2020
CROSSREFS
KEYWORD
nonn,easy,base
EXTENSIONS
More terms from Robert Lozyniak (11(AT)onna.com)
STATUS
approved