[go: up one dir, main page]

login
A050603
A001511 with every term repeated.
10
1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4
OFFSET
0,3
COMMENTS
Column 2 of A050600: a(n) = add1c(n,2).
Absolute values of A094267.
Consider the Collatz (or 3x+1) problem and the iterative sequence c(k) where c(0)=n is a positive integer and c(k+1)=c(k)/2 if c(k) is even, c(k+1)=(3*c(k)+1)/2 if c(k) is odd. Then a(n) is the minimum number of iterations in order to have c(a(n)) odd if n is even or c(a(n)) even if n is odd. - Benoit Cloitre, Nov 16 2001
LINKS
Cristian Cobeli, Mihai Prunescu, and Alexandru Zaharescu, A growth model based on the arithmetic Z-game, arXiv:1511.04315 [math.NT], 2015.
Francis Laclé, 2-adic parity explorations of the 3n+ 1 problem, hal-03201180v2 [cs.DM], 2021.
FORMULA
Equals A053398(2, n).
G.f.: (1+x)/x^2 * Sum(k>=1, x^(2^k)/(1-x^(2^k))). - Ralf Stephan, Apr 12 2002
a(n) = A136480(n+1). - Reinhard Zumkeller, Dec 31 2007
a(n) = A007814(n + 2 - n mod 2). - James Spahlinger, Oct 11 2013, corrected by Charles R Greathouse IV, Oct 14 2013
a(2n) = a(2n+1). 1 <= a(n) <= log_2(n+2). - Charles R Greathouse IV, Oct 14 2013
a(n) = A007814(n+1)+A007814(n+2).
a(n) = (-1)^n * A094267(n). - Michael Somos, May 11 2014
a(n) = A007814(floor(n/2)+1). - Chai Wah Wu, Jul 07 2022
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2. - Amiram Eldar, Sep 15 2022
MATHEMATICA
With[{c=Table[Position[Reverse[IntegerDigits[n, 2]], 1, 1, 1], {n, 110}]// Flatten}, Riffle[c, c]] (* Harvey P. Dale, Dec 06 2018 *)
PROG
(PARI) a(n)=valuation(n+2-n%2, 2) \\ Charles R Greathouse IV, Oct 14 2013
(PARI) {a(n) = my(A); if( n<0, 0, A = sum(k=1, length( binary(n+2)) - 1, x^(2^k) / (1 - x^(2^k)), x^3 * O(x^n)); polcoeff( A * (1 + x) / x^2, n))}; /* Michael Somos, May 11 2014 */
(Python)
def A050603(n): return ((m:=n>>1)&~(m+1)).bit_length()+1 # Chai Wah Wu, Jul 07 2022
CROSSREFS
Bisection gives column 1 of A050600: A001511.
Sequence in context: A003638 A094267 A136480 * A286554 A352784 A037162
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen Jun 22 1999
EXTENSIONS
Definition simplified by N. J. A. Sloane, Aug 27 2016
STATUS
approved