OFFSET
1,8
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000 (first 10000 terms from Reinhard Zumkeller)
FORMULA
Dirichlet g.f.: Product_{n is a prime power >1}(1 + 1/n^s).
Multiplicative with a(p^e) = A000009(e).
a(A002110(k))=1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.26020571070524171076..., where f(x) = (1-x) * Product_{k>=1} (1 + x^k). - Amiram Eldar, Oct 03 2023
EXAMPLE
From Gus Wiseman, Jul 30 2022: (Start)
The A000688(216) = 9 factorizations of 216 into prime powers are:
(2*2*2*3*3*3)
(2*2*2*3*9)
(2*2*2*27)
(2*3*3*3*4)
(2*3*4*9)
(2*4*27)
(3*3*3*8)
(3*8*9)
(8*27)
Of these, the a(216) = 4 strict cases are:
(2*3*4*9)
(2*4*27)
(3*8*9)
(8*27)
(End)
MAPLE
A050361 := proc(n)
local a, f;
if n = 1 then
1;
else
a := 1 ;
for f in ifactors(n)[2] do
a := a*A000009(op(2, f)) ;
end do:
end if;
end proc: # R. J. Mathar, May 25 2017
MATHEMATICA
Table[Times @@ PartitionsQ[Last /@ FactorInteger[n]], {n, 99}] (* Arkadiusz Wesolowski, Feb 27 2017 *)
PROG
(Haskell)
a050361 = product . map a000009 . a124010_row
-- Reinhard Zumkeller, Aug 28 2014
(PARI)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved