[go: up one dir, main page]

login
A049532
Numbers k such that k^2 + 1 is not squarefree.
26
7, 18, 32, 38, 41, 43, 57, 68, 70, 82, 93, 99, 107, 117, 118, 132, 143, 157, 168, 182, 193, 207, 218, 232, 239, 243, 251, 257, 268, 282, 293, 307, 318, 327, 332, 343, 357, 368, 378, 382, 393, 407, 408, 418, 432, 437, 443, 457, 468, 482, 493, 500, 507, 515
OFFSET
1,1
COMMENTS
The sequence is infinite. For instance, it contains all numbers of the form 7 + 25m. - Emmanuel Vantieghem, Oct 25 2016
More generally, the sequence contains all numbers of the form a(n) + (a(n)^2 + 1) * m for even a(n) and a(n) + (a(n)^2 + 1) * m / 2 for odd a(n). - David A. Corneth, Oct 25 2016
The asymptotic density of this sequence is 1 - A335963 = 0.1051587754... - Amiram Eldar, Jul 08 2020
LINKS
FORMULA
A059592(a(n)) > 1; A124809(n) = a(n)^2 + 1. - Reinhard Zumkeller, Nov 08 2006
EXAMPLE
a(1) = 7 because 7^2 + 1 = 49 + 1 = 50 is divisible by 25, a square.
MATHEMATICA
n=1; Reap[Do[While[SquareFreeQ[n^2+1], n++]; Sow[n]; n++, {c, 10000}]][[2, 1]] (* Zak Seidov, Feb 24 2011 *)
PROG
(PARI) for(n=1, 1e4, if(!issquarefree(n^2+1), print1(n", "))) \\ Charles R Greathouse IV, Feb 24 2011
(Magma) [n: n in [1..6*10^2]| not IsSquarefree(n^2+1)]; // Bruno Berselli, Oct 15 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition rewritten by Bruno Berselli, Oct 15 2012
Mathematica updated by Jean-François Alcover, Jun 19 2013
STATUS
approved