[go: up one dir, main page]

login
A335963
Decimal expansion of Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2).
18
8, 9, 4, 8, 4, 1, 2, 2, 4, 5, 6, 2, 4, 8, 8, 1, 7, 0, 7, 2, 5, 6, 6, 1, 5, 0, 6, 9, 0, 8, 4, 3, 7, 3, 2, 1, 9, 8, 7, 5, 4, 7, 8, 0, 8, 9, 2, 0, 7, 1, 8, 9, 7, 2, 6, 0, 1, 7, 9, 9, 4, 2, 7, 6, 1, 6, 5, 6, 3, 8, 9, 2, 2, 1, 2, 0, 9, 1, 5, 5, 0, 2, 8, 8, 5, 9, 4, 2, 9, 1, 0, 5, 3, 9, 5, 8, 9, 1, 0, 8, 0, 0, 3, 3, 2, 2
OFFSET
0,1
COMMENTS
The asymptotic density of the numbers k such that k^2+1 is squarefree (A049533) (Estermann, 1931).
The constant c in Sum_{k=0..n} phi(k^2 + 1) = A333170(n) ~ (1/4)*c*n^3 (Finch, 2018).
The constant c in Sum_{k=0..n} phi(k^2 + 1)/(k^2 + 1) = (3/4)*c*n + O(log(n)^2) (Postnikov, 1988).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 101.
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 166.
A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., 1988, pp. 192-195.
LINKS
Theodor Estermann, Einige Sätze über quadratfreie Zahlen, Mathematische Annalen, Vol. 105 (1931), pp. 653-662, alternative link.
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 14.
D. R. Heath-Brown, Square-free values of n^2 + 1, Acta Arithmetica, Vol. 155, No. 1 (2012), pp. 1-13.
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo functions for small moduli, arXiv:1008.2547 [math.NT], variable F(m=4,n=1,s=2), p. 38.
Wolfgang Schwarz, Über die Summe Sigma_{n <= x} phi(f)(n) und verwandte Probleme, Monatshefte für Mathematik, Vol. 66, No. 1 (1962), pp. 43-54, alternative link.
Radoslav Tsvetkov, On the distribution of k-free numbers and r-tuples of k-free numbers. A survey, Notes on Number Theory and Discrete Mathematics, Vol. 25, No. 3 (2019), pp. 207-222.
FORMULA
Equals 2*A065474/A340617.
EXAMPLE
0.89484122456248817072566150690843732198754780892071...
MAPLE
Digits := 150;
with(NumberTheory);
DirichletBeta := proc(s) (Zeta(0, s, 1/4) - Zeta(0, s, 3/4))/4^s; end proc;
alfa := proc(s) DirichletBeta(s)*Zeta(s)/((1 + 1/2^s)*Zeta(2*s)); end proc;
beta := proc(s) (1 - 1/2^s)*Zeta(s)/DirichletBeta(s); end proc;
pzetamod41 := proc(s, terms) 1/2*Sum(Moebius(2*j + 1)*log(alfa((2*j + 1)*s))/(2*j + 1), j = 0..terms); end proc;
evalf(exp(-Sum(2^t*pzetamod41(2*t, 50)/t, t = 1..200))); # Vaclav Kotesovec, Jan 13 2021
MATHEMATICA
f[p_] := If[Mod[p, 4] == 1, 1 - 2/p^2, 1]; RealDigits[N[Product[f[Prime[i]], {i, 1, 10^6}], 10], 10, 8][[1]] (* for calculating only the first few terms *)
(* -------------------------------------------------------------------------- *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z2[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = 2^w * P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z2[4, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
PROG
(PARI) f(lim, poly=1-'x-'x^2/2)=prodeulerrat(subst(poly, 'x, 1/'x^2))*prodeuler(p=2, lim, my(pm2=1./p^2); if(p%4==1, 1.-2*pm2, 1.)/subst(poly, 'x, pm2)) \\ Gets 14 digits at lim=1e9; Charles R Greathouse IV, Aug 10 2022
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jul 01 2020
EXTENSIONS
More digits (from the paper by R. J. Mathar) added by Jon E. Schoenfield, Jan 12 2021
More digits from Vaclav Kotesovec, Jan 13 2021
STATUS
approved