[go: up one dir, main page]

login
A049108
a(n) is the number of iterations of Euler phi function needed to reach 1 starting at n (n is counted).
25
1, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 5, 5, 6, 4, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 5, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7, 7, 6, 7, 7, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 7, 8, 6, 8, 6, 7, 7, 8, 6, 7, 7, 7, 7, 7, 7, 8, 6, 7, 7, 8, 7, 8, 7, 7
OFFSET
1,2
LINKS
FORMULA
By the definition of a(n) we have for n >= 2 the recursion a(n) = a(Phi(n)) + 1. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
log_3 n << a(n) << log_2 n. - Charles R Greathouse IV, Feb 07 2012
EXAMPLE
If n=164 the trajectory is {164,80,32,16,8,4,2,1}. Its length is 8, thus a(164)=8.
MAPLE
A049108 := proc(n)
local a, e;
e := n ;
a :=0 ;
while e > 1 do
a := a+1 ;
e := numtheory[phi](e) ;
end do:
1+a;
end proc:
seq(A049108(n), n=1..60) ; # R. J. Mathar, Sep 08 2021
MATHEMATICA
f[n_] := Length[NestWhileList[ EulerPhi, n, # != 1 &]]; Array[f, 105] (* Robert G. Wilson v, Feb 07 2012 *)
PROG
(PARI) a(n)=my(t=1); while(n>1, t++; n=eulerphi(n)); t \\ Charles R Greathouse IV, Feb 07 2012
CROSSREFS
Cf. A000010, A007755. Equals A003434 + 1. Row lengths of A375478.
Sequence in context: A305716 A297616 A213251 * A179846 A086925 A088858
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved