[go: up one dir, main page]

login
A048622
Difference of maximal and central values of A001222 when applied to {C(n,k)} set.
2
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 2, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 1, 3, 2, 1, 0, 2, 1, 2, 1, 1, 0, 0, 0, 2, 2, 1, 0, 1, 1, 3, 2, 3, 2, 0, 0, 2, 0, 0, 0, 4, 3, 4, 3, 2, 2, 3, 3, 5, 4, 3, 2, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 0, 0, 1, 1, 3, 2, 1, 0, 0, 0, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2
OFFSET
1,18
LINKS
FORMULA
a(n) = Max_k {A001222(C(n, k))} - A001222(A001405(n)).
a(n) = A048620(n) - A048621(n). - Sean A. Irvine, Jun 24 2021
EXAMPLE
n=24: the sums of prime factor exponents when k runs from 0 to 24 are {0,4,4,5,5,7,6,8,6,8,8,9,7,9,8,8,6,8,6,7,5,5,4,4,0}. The central value is 7, the maximal is 9 so a(24)=9-7.
PROG
(PARI) a(n) = vecmax(apply(bigomega, vector(n+1, k, binomial(n, k-1)))) - bigomega(binomial(n, n\2)); \\ Michel Marcus, Jun 25 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved