[go: up one dir, main page]

login
A047726
Number of different numbers that are formed by permuting digits of n.
27
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 6
OFFSET
1,10
COMMENTS
The minimum value of a(A171102(n)) is 10*9!. - Altug Alkan, Jul 08 2016
LINKS
FORMULA
a(n) << n / (log_10 n)^4.5 by Stirling's approximation. - Charles R Greathouse IV, Sep 29 2011
a(n) = A000142(A055642(n))/Product_{k=0..9} A000142(A100910(n,k)). - Robert Israel, Jul 08 2016
EXAMPLE
From 102 we get 102, 120, 210, 201, 12 and 21, so a(102)=6.
From 33950 with 5 digits, one '0', two '3', one '5' and one '9', we get 5! / (1! * 2! * 1! * 1!) = 60 different numbers and a(33950) = 60. - Bernard Schott, Oct 20 2019
MAPLE
f:= proc(n) local L;
L:= convert(n, base, 10);
nops(L)!/mul(numboccur(i, L)!, i=0..9);
end proc:
map(f, [$1..1000]); # Robert Israel, Jul 08 2016
MATHEMATICA
pd[n_]:=Module[{p=Permutations[IntegerDigits[n]]}, Length[Union [FromDigits/@p]]]; pd/@Range[120] (* Harvey P. Dale, Mar 22 2011 *)
PROG
(Haskell)
import Data.List (permutations, nub)
a047726 n = length $ nub $ permutations $ show n
-- Reinhard Zumkeller, Jul 26 2011
(PARI) a(n)=n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!) \\ Charles R Greathouse IV, Sep 29 2011
(PARI) A047726(n)={local(c=Vec(0, 10)); apply(d->c[d+1]++, digits(n)); logint(n*10, 10)!/prod(i=1, 10, c[i]!)} \\ M. F. Hasler, Oct 18 2019
CROSSREFS
Cf. A055098. Identical to A043537 and A043562 for n<100.
Cf. A179239. - Aaron Dunigan AtLee, Jul 14 2010
Sequence in context: A297778 A043562 A043537 * A297779 A043563 A043538
KEYWORD
nonn,easy,base,nice
EXTENSIONS
Corrected by Henry Bottomley, Apr 19 2000
STATUS
approved