OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=6 and b(k)=2^(k+1) for k>1. - Philippe Deléham, Oct 19 2011
a(n) = 2n - A010873(n+1). - Wesley Ivan Hurt, Jul 07 2013
G.f.: x^2*(1+5*x+x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 14 2013
From Wesley Ivan Hurt, May 29 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (4*n-3-i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/2 where i=sqrt(-1).
E.g.f.: 1 - sin(x) + cos(x) + (2*x - 1)*sinh(x) + 2*(x - 1)*cosh(x). - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + (5-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
MAPLE
A047551:=n->(4*n-3-I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/2: seq(A047551(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Table[(4n-3-I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/2, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved