OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
FORMULA
a(0)=0, a(1)=2, a(2)=4, a(3)=6, a(4)=7, a(5)=8, a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6. - Harvey P. Dale, May 09 2014
From Wesley Ivan Hurt, Jul 31 2016: (Start)
G.f.: x^2*(2+2*x+2*x^2+x^3+x^4)/((x-1)^2*(1+x+x^2+x^3+x^4)).
a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 25 + 3*(n mod 5) - 2*((n+1) mod 5) - 2*((n+2) mod 5) - 2*((n+3) mod 5) + 3*((n+4) mod 5))/25.
a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-4, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
MAPLE
A047511:=n->8*floor(n/5)+[(0, 2, 4, 6, 7)][(n mod 5)+1]: seq(A047511(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 4, 6, 7}, Mod[#, 8]]&] (* or *) LinearRecurrence[ {1, 0, 0, 0, 1, -1}, {0, 2, 4, 6, 7, 8}, 100] (* Harvey P. Dale, May 09 2014 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 4, 6, 7]]; // Wesley Ivan Hurt, Jul 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved