[go: up one dir, main page]

login
A047342
Numbers that are congruent to {0, 3, 4} mod 7.
6
0, 3, 4, 7, 10, 11, 14, 17, 18, 21, 24, 25, 28, 31, 32, 35, 38, 39, 42, 45, 46, 49, 52, 53, 56, 59, 60, 63, 66, 67, 70, 73, 74, 77, 80, 81, 84, 87, 88, 91, 94, 95, 98, 101, 102, 105, 108, 109, 112, 115, 116, 119, 122, 123, 126, 129, 130, 133, 136, 137, 140
OFFSET
1,2
COMMENTS
Record values in A168223: a(n) = A168223(A168224(n)) and A168223(m) < a(n) for m < A168224(n). - Reinhard Zumkeller, Nov 20 2009
Also: Numbers n such that kronecker(n^2-4,7) = -1. - M. F. Hasler, Mar 14 2013
FORMULA
G.f.: x(3+x+3x^2)/((1-x)^2*(1+x+x^2)). - R. J. Mathar, Sep 17 2008
a(n) = a(n-1) + a(n-3) - a(n-4), n>4. - Vincenzo Librandi, Mar 24 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (21*n-21-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-4, a(3k-2) = 7k-7. (End)
MAPLE
A047342:=n->(21*n-21-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047342(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 3, 4}, Mod[#, 7]]&] (* Harvey P. Dale, Mar 18 2011 *)
CoefficientList[Series[(3x+x^2+3x^3)/((-1+x)^2(1+x+x^2)), {x, 0, 160}], x] (* Vladimir Joseph Stephan Orlovsky, Jan 26 2012 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 4, 7}, 61] (* Ray Chandler, Aug 25 2015 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 3, 4]]; // Wesley Ivan Hurt, Jun 13 2016
CROSSREFS
Sequence in context: A295399 A257507 A003669 * A334469 A228854 A257508
KEYWORD
nonn,easy
STATUS
approved